暂无搜索历史
在过去几年中,YOLO 系列模型已成为实时目标检测领域的主流方法。许多研究通过修改架构、扩充数据以及设计新的损失函数,将基线水平提升到了更高层次。然而,我们发现...
相关研究提出一种基于 YOLO 的水下图像目标检测方法,引入一种改进的无锚点 YOLO 检测方法,将检测特征与识别特征分离,以减少特征间的相互干扰,提高检测精度...
目前,基于卫星图像的多类别船舶检测和分类由于在军事和民用领域的重要应用而备受关注。
合成孔径雷达(Synthetic Aperture Radar, SAR)作为一种基于电磁波的主动探测技术,具有全天时、全天候的对地观测能力,已发展成为一种不可...
春节前最后一周,能媲美 Open AI 满血版 o1(Full Version,而非 preview)的模型终于出现了!
随着当前大语言模型的广泛应用和推理时扩展的新范式的崛起,如何实现高效的大规模推理成为了一个巨大挑战。特别是在语言模型的推理阶段,传统注意力机制中的键值缓存(KV...
https://pan.baidu.com/s/1yoamhld79Glc4wE_SUT1DA
论文地址:https://arxiv.org/pdf/2112.13082.pdf
最近在arXiv中翻阅到一遍基于Yolov8的飞机实时目标检测论文,当时通过研究其中的一些相关算法,并应用到实际场景。一个可用于迁移学习和进一步研究的飞行物体实...
目标检测被认为是计算机视觉领域中最具挑战性的问题之一,因为它涉及场景中对象分类和对象定位的组合。最近,与其他方法相比,深度神经网络 (DNN) 已被证明可以实现...
论文链接:https://arxiv.org/pdf/2104.08683.pdf
在过去的十年中,深度神经网络(DNNs)在各种应用中表现出显著的性能。当我们试图解决更艰难和最新的问题时,对计算和电力资源的需求增加已经成为不可避免的。
论文地址:https://arxiv.org/pdf/2201.03243v1.pdf
由于缺乏夜间图像注释,夜间目标检测是一个具有挑战性的问题。尽管有几种领域自适应方法,但实现高精度结果仍然是一个问题。
近期开源的 Deepseek V3,让国产 MoE 大模型在全球圈粉无数,一跃成为中国 AI 圈的顶流担当。
Column of Computer Vision Institute 这个项目登上了今天的GitHub Trending。
Non keypoint-based的目标检测模型由分类和回归分支组成,由于不同的任务驱动因素,这两个分支对来自相同尺度级别和相同空间位置的特征具有不同的敏感性...
Epoch Adaptor是一种为密集探测器提供稳定高效的端到端SSOD训练计划的方法。伪标签分配器防止了在师生相互学习机制期间由大量低质量伪标签引起的可能干扰...
论文地址:https://arxiv.org/pdf/2111.13824.pdf
暂未填写公司和职称
暂未填写个人网址