暂无搜索历史
本文参考的是《VOLO:视觉识别中的视觉展望器》一文,该论文主要讨论了视觉识别领域中卷积神经网络(CNNs)与视觉转换器(ViTs)的性能对比,并提出了一个新的...
https://arxiv.org/pdf/1905.02188 特征上采样是许多现代卷积网络架构(例如特征金字塔)中的关键操作。其设计对于诸如目标检测和语义/...
本文介绍了一种基于YOLOv5的人脸检测方法,命名为YOLO-FaceV2。该方法旨在解决人脸检测中的尺度变化、简单与困难样本不平衡以及人脸遮挡等问题。通过引入...
论文介绍了一种新的WTConv模块,该模块通过利用小波变换有效地增加了卷积的感受野,并作为深度卷积的即插即用替代品在多个计算机视觉任务中表现出色。使用WTCon...
在计算机视觉领域,目标检测任务的性能提升一直是研究热点。我们基于对YoloV8模型的深入理解,创新性地引入了DeBiLevelRoutingAttention(...
在计算机视觉领域,目标检测与实例分割任务一直是研究的热点。YoloV8作为目标检测领域的佼佼者,凭借其出色的性能和效率赢得了广泛的认可。然而,随着技术的不断进步...
在本文中,我们创新性地将ContextAggregation模块引入到了YoloV8模型中,特别是在其Neck部分的三个输出特征中融入了该模块,从而实现了显著的...
在实时目标检测领域,Yolo系列模型一直以其高效和准确而著称。近日,我们成功将Efficient-RepGFPN模块引入YoloV10中,实现了显著的涨点效果。...
在实时目标检测领域,Yolo系列模型一直以其高效和准确而著称。近日,我们成功将Efficient-RepGFPN模块引入YoloV8中,实现了显著的涨点效果。这...
在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV9模型中,以替换其原有的主干网络,这一创新性的...
在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV10模型中,以替换其原有的主干网络,这一创新性...
在目标检测领域,模型性能的提升一直是研究者和开发者们关注的重点。近期,我们尝试将CAFormer模块引入YoloV8模型中,以替换其原有的主干网络,这一创新性的...
在深度学习的广阔领域中,目标检测作为计算机视觉的基石任务之一,始终吸引着研究者的广泛关注。近期,我们大胆尝试将前沿的PoolFormer主干网络引入经典的目标检...
在追求高效且高精度的目标检测领域,RT-DETR凭借其卓越的性能和广泛的应用基础,一直是研究者和开发者们的首选框架之一。然而,随着应用场景的不断拓展,对模型尺寸...
在深度学习领域,目标检测作为计算机视觉的核心任务之一,其性能的提升始终吸引着研究者们的目光。近期,我们创新性地将Swin Transformer这一前沿的Tra...
暂未填写公司和职称
暂未填写个人简介
暂未填写技能专长
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市