概述
是一个同步辅助类,允许一组线程相互等待,直到到达某个公共的屏障点,通过它可以完成多个线程之间相互等待,只有当每个线程都准备就绪后,才能各自继续往下执行后面的操作。
与CountDownLatch有相似的地方,都是使用计数器实现,当某个线程调用了CyclicBarrier的await()方法后,该线程就进入了等待状态,而且计数器执行加1操作,当计数器的值达到了设置的初始值,调用await()方法进入等待状态的线程会被唤醒,继续执行各自后续的操作。CyclicBarrier在释放等待线程后可以重用,所以,CyclicBarrier又被称为循环屏障。
使用场景
可以用于多线程计算数据,最后合并计算结果的场景;
CyclicBarrier与CountDownLatch的区别
CountDownLatch的计数器只能使用一次,而CyclicBarrier的计数器可以使用reset()方法进行重置,并且可以循环使用,CountDownLatch主要实现1个或n个线程需要等待其他线程完成某项操作之后,才能继续往下执行,描述的是1个或n个线程等待其他线程的关系。而CyclicBarrier主要实现了多个线程之间相互等待,直到所有的线程都满足了条件之后,才能继续执行后续的操作,描述的是各个线程内部相互等待的关系;
CyclicBarrier能够处理更复杂的场景,如果计算发生错误,可以重置计数器让线程重新执行一次;
CyclicBarrier中提供了很多有用的方法,比如:可以通过getNumberWaiting()方法获取阻塞的线程数量,通过isBroken()方法判断阻塞的线程是否被中断;
代码示例
示例代码如下:
public class CyclicBarrierExample {
private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5);
public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++){
final int threadNum = i;
Thread.sleep(1000);
executorService.execute(() -> {
try {
race(threadNum);
} catch (Exception e) {
e.printStackTrace();
}
});
}
executorService.shutdown();
}
private static void race(int threadNum) throws Exception{
Thread.sleep(1000);
log.info("{} is ready", threadNum);
cyclicBarrier.await();
log.info("{} continue", threadNum);
}
}
设置等待超时示例代码如下:
public class CyclicBarrierExample {
private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5);
public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++){
final int threadNum = i;
Thread.sleep(1000);
executorService.execute(() -> {
try {
race(threadNum);
} catch (Exception e) {
e.printStackTrace();
}
});
}
executorService.shutdown();
}
private static void race(int threadNum) throws Exception{
Thread.sleep(1000);
log.info("{} is ready", threadNum);
try{
cyclicBarrier.await(2000, TimeUnit.MILLISECONDS);
}catch (BrokenBarrierException | TimeoutException e){
log.warn("BarrierException", e);
}
log.info("{} continue", threadNum);
}
}
在声明CyclicBarrier的时候,还可以指定一个Runnable,当线程达到屏障的时候,可以优先执行Runnable中的方法。示例代码如下:
public class CyclicBarrierExample {
private static CyclicBarrier cyclicBarrier = new CyclicBarrier(5, () -> {
log.info("callback is running");
});
public static void main(String[] args) throws Exception {
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < 10; i++){
final int threadNum = i;
Thread.sleep(1000);
executorService.execute(() -> {
try {
race(threadNum);
} catch (Exception e) {
e.printStackTrace();
}
});
}
executorService.shutdown();
}
private static void race(int threadNum) throws Exception{
Thread.sleep(1000);
log.info("{} is ready", threadNum);
cyclicBarrier.await();
log.info("{} continue", threadNum);
}
}
private final ReentrantLock lock = new ReentrantLock();
private final Condition trip = lock.newCondition();
//表示处在等待状态的线程个数
private int count;
//构造函数
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
CyclicBarrier主要借助重入锁ReentrantLock和Condition实现,count初始值等于CyclicBarrier实例化指明的等待线程数量,用于等待线程计数,parties表示有多少个个体(相当于调多少次await方法,每调一次await方法相当于一个线程到达了栅栏处),barrierAction其实相当于回调函数,当最后一个线程达到了栅栏处就会触发这个回调函数;