前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >hadoop+spark+zookeeper+hive的大数据分布式集群搭建

hadoop+spark+zookeeper+hive的大数据分布式集群搭建

原创
作者头像
Tianlin_Zz
修改2022-11-26 10:43:47
7680
修改2022-11-26 10:43:47
举报
文章被收录于专栏:运维日常

hadoop+spark+zookeeper分布式集群部署

  • 这里的排版可能不太好看因为本是我直接写在博客上的外挂标签修剪的,如果想要获得更好的阅读体验建议在我的博客中浏览

1.环境准备

环境的准备基于我写的初始化脚本,自用7.x系列的CentOS,老版本的就支持CentOS/Redhat6,7,8但是有点不完善,需要可以邮箱或者博客留言。

os\ip

hostname

block

centos7.9 192.168.222.226

master

rsmanager,datanode,namenode.snamenode,nmanager

centos7.9 192.168.222.227

node1

snamenode,nmnager,datanode

centos7.9 192.168.222.228

node2

datanode,nmanager

代码语言:txt
复制
# git clone https://github.com/linjiangyu2/K.git   //可能会拉不下来,多拉几次就下来了,因为托管代码的服务器是国外的
# cd K
# cat README.md  //不会使用的要看一下这个文件,了解脚本需要输入的配置
# ./ksh  //依次输入你自己的配置,第一次使用这个脚本一定要看README.md文件
# 如果需要有时候改IP地址图方便的话,直接把ksh这个二进制的脚本放在/usr/bin下,便可以在全局执行了
# mv ksh /usr/bin/ksh
使用ksh初始化后,开始配置

对应自己的IP地址,最好/etc/hosts的解析名和我一致,不然下面的配置文件需要自己对应自己的解析名修改master# cat > /etc/hosts <<END 127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4 ::1 localhost localhost.localdomain localhost6 192.168.222.226 master 192.168.222.227 node1 192.168.222.228 node2 END master# ssh-keygen -P '' -f ~/.ssh/id_rsa master# for i in master node{1..2};do ssh-copy-id $i;done master# for i in node{1..2};do rsync -av /etc/hosts root@$i:/etc/hosts;done master# for i in master node{1..2};do ssh $i yum install -y openssl-devel;done master# cd /usr/lib64 master# ln -s libcrypto.so.1.0.2k libcrypto.so

2.搭建

####2.1 hadoop分布式

上传jdk和hadoop的tar包

这里使用的二进制包 hadoop-2.8.5官网二进制包

jdk8官网二进制包

代码语言:txt
复制
  [master]# tar xf hadoop...  //不知道你使用的版本,写了...,以下也是,tab键或者对应修改就可以
  # ...是表示我不知道你使用的版本,自己改
  [root@ master]# tar xf jdk...
  [root@ master]# tar xf hadoop...
  [root@ master]# mv hadoop... /opt/hadoop285
  [root@ master]# mv jdk... /usr/local/jdk
  
# vim /etc/profile
export JAVA_HOME=/usr/local/jdk
export HADOOP_HOME=/opt/hadoop285
export PATH=${JAVA_HOME}/bin:${HADOOP_HOME}/bin:${HADOOP_HOME}/sbin:$PATH
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native 
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"
export LD_LIBRARY_PATH=$HADOOP_HOME/lib/native/:$LD_LIBRARY_PATH
  
# source !$

开始修改配置文件,真的像我一样懒的人可以访问http://182.61.144.62:9091/,把上面的文件全部下载覆盖到/opt/hadoop285/etc/hadoop/下面,但是要保证/etc/hosts解析的主机名是一致的 以下是自己直接写入配置,在master服务器上进行# cd /opt/hadoop285/etc/hadoopvim hadoop-env.sh //修改文件里面的export JAVA_HOME=${JAVA_HOME}为export JAVA_HOME=/usr/local/jdkvim yarn-env.sh //修改前面有注释的export JAVA_HOME为export JAVA_HOME=/usr/local/jdkvim core-site.xml<configuration> <property> <name>hadoop.tmp.dir</name> <value>/opt/data</value> </property> <property> <name>fs.defaultFS</name> <value>hdfs://master:9000</value> </property> <property> <name>hadoop.proxyuser.root.hosts</name> <value>*</value> </property> <property> <name>hadoop.proxyuser.root.groups</name> <value>*</value> </property> </configuration>

代码语言:txt
复制
# vim hdfs-site.xml
<configuration>
        <property>
                <name>dfs.replication</name>
                <value>1</value>
        </property>
        <property>
                <name>dfs.namenode.name.dir</name>
                <value>/opt/data/hdfs/name</value>
        </property>
        <property>
                <name>dfs.datanode.data.dir</name>
                <value>/opt/data/hdfs/data</value>
        </property>
</configuration>
代码语言:txt
复制
# vim yarn-site.xml 

<configuration>
        <property>
                <name>yarn.resourcemanager.hostname</name>
                <value>master</value>
        </property>
        <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
        </property>
</configuration>
代码语言:txt
复制
# cp mapred-site.xml.template mapred-site.xml
# vim mapred-site.xml
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>
代码语言:txt
复制
# vim slaves
master
node1
node2

然后在master节点把配置发到各个节点

代码语言:txt
复制
[master]# for i in node{1..2};do rsync -av /usr/local/jdk root@$i:/usr/local/;done
# for i in node{1..2};do rsync -av /opt/hadoop285 root@$i:/opt/;done
# for i in node{1..2};do rsync -av /etc/profile root@$i:/etc/profile;done
然后到各个节点
[node1,2]# source /etc/profile

在node1,2上操作,最后在master操作

代码语言:txt
复制
# hdfs namenode -format   //初始化
# ls -d /opt/data   //此文件夹产生就是初始化成功

在master上操作

代码语言:txt
复制
[root@ master]# start-all.sh

最后可以在各个节点使用jps命令查看各自的部件

代码语言:txt
复制
[root@ xxx]# jps

当然web界面也可以访问的,浏览器访问192.168.222.226:8088和192.168.222.226:50070(对应自己IP地址) 来尝试运行一下第一个hadoop分布式任务吧

代码语言:txt
复制
[root@ master]# hdfs dfs -put /etc/passwd /t1
[root@ master]# hadoop jar /opt/hadoop285/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8.5.jar wordcount /t1 /output/00
[root@ master]# hdfs dfs -ls /output/00  //查看运行后的结果文件,运行后的数据在part-r-00000

####2.2 spark分布式

下面开始搭建分布式spark,这里使用的是spark的3.3.0版本 spark官网下载软件包# 把spark包上传到机器上,然后到该包的目录,这里统一以spark-3.3.0-bin-hadoop3.tgz这个包为演示 root@ master# tar xf spark-3.3.0-bin-hadoop3.tgz root@ master# mv spark-3.3.0-bin-hadoop3 /opt/spark root@ master# vim /etc/profile export PATH=/opt/spark/bin:/opt/spark/sbin:$PATH root@ master# cd /opt/spark/conf root@ master# mv spark-env.sh.template spark-env.sh root@ master# vim spark-env.sh export JAVA_HOME=/usr/local/jdk export HADOOP_CONF_DIR=/opt/hadoop285/etc/hadoop export SPARK_MASTER_IP=master #对应自己的master机器IP或者master解析的域名,如果是按照我上面做的直接写master即可 export SPARK_WORKER_MEMORY=1024m export SPARK_WORKER_CORES=2 export SPARK_EXECUTOR_MEMORY=1024m export SPARK_WORKER_INSTANCES=1 export SOARK_MASTER_PORT=7077 export SPARK_EXECUTOR_CORES=1 SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=hdfs://master:9000/spark_logs" root@ master# cp spark-defaults.conf.template spark-defaults.conf root@ master# vim spark-defaults.conf spark.master spark://master:7077 spark.eventLog.enabled true spark.eventLog.dir hdfs://master:9000/spark_logs root@ master# vim slaves //对应自己的三台主机IP地址或者解析的域名 master node1 node2 root@ master# cd /opt/spark/sbin root@ master# mv start-all.sh spark-start.sh root@ master# mv stop-all.sh spark-stop.sh root@ master# source /etc/profile root@ master# scp -r /opt/spark root@node1:/opt/ root@ master# scp -r /opt/spark root@node2:/opt/ root@ master# scp -r /etc/profile root@node1:/etc/ root@ master# scp -r /etc/profile root@node2:/etc/然后在各工作节点执行命令root@ node1,node2# source /etc/profile在master节点执行root@ master# start-all.sh root@ master# hdfs dfs -mkdir /spark_logs root@ master# spark-start.sh //启动spark集群 root@ master# jps //查看以上便搭建好了spark结合hadoop的分布式集群,spark也有自己的web界面,可以浏览器访问192.168.222.226:8080来查看(对应自己IP地址)

2.3 zookeeper分布式

zookeeper-3.5.10官网源码包 在master机器上执行

代码语言:shell
复制
# tar xf zookeeper*
# mv zookeeper* /opt/zookeeper
# mv /opt/zookeeper/conf/zoo_sample.cfg /opt/zookeeper/conf/zoo.cfg
# vim /opt/zookeeper/conf/zoo.cfg
修改
dataDir=/opt/data/zookeeper
添加
dataLogDir=/opt/data/zookeeper/logs
server.1=master:2888:3888
server.2=node1:2888:3888
server.3=node2:2888:3888
# 这里对应自己的主机名

在各机器上执行

代码语言:shell
复制
# mkdir -p /opt/data/zookeeper/logs
# echo 1 > /opt/data/zookeeper/myid             #这里master对应上面的server.1 便要echo1,node1对应server.2便要echo 2,node3对应server.3便要echo 3

在master机器上执行

代码语言:shell
复制
# vim /etc/profile
export ZOOKEEPER_HOME=/opt/zookeeper
export PATH=${ZOOKEEPER_HOME}/bin:$PATH
# for i in node{1..2};do rsync -av /opt/zookeeper root@$i:/opt/;done
# for i in node{1..2};do rsync -av /etc/profile /etc/;done

在各机器上执行

代码语言:shell
复制
# source /etc/profile
# zkServer.sh start             #这个命令最好使用多命令一起执行,就是多个机器的执行时间要差不多一直,因为zookeeper对时间的要求性很高和各种问题
# zkServer.sh status    # 可以在各节点查看自己的角色是leader还是follower
hive
Mariadb

这里为了方便直接安装mariadb作为MySQL使用,CentOS7.x和CentOS6.x使用方法不同(为了朋友写了CentOS6的,泪目了),使用前提网络要能访问外网

<!-- tab CentOS 7.x -->

CentOS 7.x

代码语言:shell
复制
[root@master ~]# yum install -y mariadb mariadb-server
[root@master ~]# systemctl enable mariadb && systemctl start mariadb
[root@master ~]# mysqladmin password abcd1234
[root@master ~]# mysql -uroot -pabcd1234 -e "create user 'root'@'%' identified by 'abcd1234';" -e "grant all privileges on *.* to 'root'@'%';"
[root@master ~]# mysql_secure_installation
按顺序输入abcd1234,n,y,n,y,y

<!-- endtab -->

<!-- tab CentOS 6.x -->

CentOS 6.x

代码语言:shell
复制
[root@master ~]# mkdir /etc/yum.repos.d/bak
[root@master ~]# mv /etc/yum.repos.d/*.repo /etc/yum.repos.d/bak/
[root@master ~]# wget -O /etc/yum.repos.d/CentOS-Base.repo https://halo.linjiangyu.com/repo/CentOS-Base.repo && yum install -y epel-release
[root@master ~]# vim /etc/yum.repos.d/mariadb.repo
[mariadb]
name=MariaDB
baseurl=https://mirrors.aliyun.com/mariadb/yum/10.4/centos6-amd64
enabled=1
gpgkey=https://mirrors.aliyun.com/mariadb/yum/RPM-GPG-KEY-MariaDB
gpgcheck=1
[root@master ~]# yum install -y mysql mysql-devel mysql-server
[root@master ~]# service mysql start && chkconfig --add mysql && chkconfig mysql on
[root@master ~]# mysqladmin password abcd1234
[root@master ~]# mysql -uroot -pabcd1234 -e "create user 'root'@'%' identified by 'abcd1234';" -e "grant all privileges on *.* to 'root'@'%';"
[root@master ~]# mysql_secure_installation
按顺序输入abcd1234,n,y,n,y,y

<!-- endtab -->

这里使用的二进制包

apache-hive-3.1.2-bin.tar.gz

把二进制包上传到master机器的opt目录下

hive配置
代码语言:shell
复制
[root@master ~]# cd /opt
[root@master opt]# tar xf apache-hive-3.1.2-bin.tar.gz
[root@master opt]# mv apache-hive-3.1.2-bin hive
[root@master opt]# cd hive/conf
[root@master conf]# cp -a hive-env.sh.template hive-env.sh
[root@master conf]# vim hive-env.sh
在最前面添加,这里对应好自己的目录
export JAVA_HOME=/usr/local/jdk
export HADOOP_HOME=/opt/hadoop285
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_HEAPSIZE=1024
export HIVE_HOME=/opt/hive
export HIVE_CONF_DIR=${HIVE_HOME}/conf
export HIVE_AUX_JARS_PATH=${HIVE_HOME}/lib
[root@master conf]# vim hive-site.xml   // 以下对应注释更改自己的配置
<configuration>
        <property>
        <name>javax.jdo.option.ConnectionURL</name>
        <!--这里对应填入自己主节点机器在hosts文件解析的域名,我是master,运行错误的话应该是你哪里的设置有问题就换成IP地址,后面对应的也就都换成IP地址-->
        <value>jdbc:mysql://master:3306/hive?createDatabaseIfNotExist=true</value>
        </property>
        <property>
                <name>javax.jdo.option.ConnectionDriverName</name>
                <value>com.mysql.jdbc.Driver</value>
        </property>
        <property>
                <name>javax.jdo.option.ConnectionUserName</name>
                <!--MySQL登陆用户-->
                <value>root</value>
        </property>
        <property>
                <name>javax.jdo.option.ConnectionPassword</name>
                <!--用户密码-->
                <value>abcd1234</value>
        </property>
        <property>
                 <name>hive.server2.thrift.port</name>
                <value>10000</value>
        </property>
        <property>
                <name>hive.server2.thrift.bind.host</name>
                <!--这里对应解析第二台的hosts文件解析的域名-->
                <value>node1</value>
        </property>
        <property>
                 <name>hive.server3.thrift.port</name>
                <value>10000</value>
        </property>
        <property>
                <name>hive.server3.thrift.bind.host</name>
                <!--这里对应解析第三台的hosts文件解析的域名-->
                <value>node2</value>
        </property>
</configuration>

[root@master conf]# cp hive-log4j2.properties.template hive-log4j2.properties
[root@master conf]# vim hive-log4j2.properties
property.hive.log.level = INFO 更改为
property.hive.log.level = ERROR
[root@master conf]# vim /etc/profile
export HIVE_HOME=/opt/hive
export PATH=${HIVE_HOME}/bin:$PATH
[root@master conf]# source /etc/profile

上传连接MySQL需要的jar包

mysql-connector-java-8.0.17.jar

代码语言:shell
复制
[root@master ~]# mv  mysql-connector-java-8.0.17.jar /opt/hive/lib/
[root@master ~]# cd /opt/hive/bin
[root@master bin]# ./schematool -initSchema -dbType mysql       // 初始化
[root@master ~]# mysql -uroot -pabcd1234
mysql> show tables from hive;           // 有数据则初始化成功
连接操作测试

hive的启动需要先启动hadoop和spark服务

代码语言:shell
复制
[root@master]# start-all.sh && spark-start.sh
# 把服务放在不同节点测试连接数据库操作
[root@master]# scp -r /opt/hive root@node1:/opt/
[root@master]# scp -r /opt/hive root@node2:/opt/
[root@master]# scp /etc/profile root@node1:/etc/
[root@master]# scp /etc/profile root@node2:/etc/
# 然后在各节点上使用命令
# source /etc/profile
# 回到master机器操作
[root@master]# hiveserver2
# 重开终端开启一个可被另外节点连接的服务终端
[root@master ~]# hive --service metastore
# 这里使用node1来连接,可能要等待久点才能起10000端口
[root@node1]# beeline           # 依次自己尝试
beeline> !connect jdbc:hive2://master:10000
Connecting to jdbc:hive2://master:10000
Enter username for jdbc:hive2://master:10000: root
Enter password for jdbc:hive2://master:10000: ***
Connected to: Apache Hive (version 3.1.2)
Driver: Hive JDBC (version 2.3.9)
Transaction isolation: TRANSACTION_REPEATABLE_READ
0: jdbc:hive2://master:10000> show databases;
+----------------+
| database_name  |
+----------------+
| default        |
+----------------+
1 row selected (1.442 seconds)
表创建测试

在master机器上准备一下用到的txt文件,上传到hdfs文件系统

代码语言:shell
复制
[master@root ~]# vim t.txt
1,linjiangyu,20
2,lintian,20
3,k,20
[master@root ~]# hdfs dfs -mkdir /t
[master@root ~]# hdfs dfs -put ./t.txt /t/

回到node1

代码语言:shell
复制
0: jdbc:hive2://master:10000> create database k ;
No rows affected (0.267 seconds)

0: jdbc:hive2://master:10000> use k;
No rows affected (0.078 seconds)

0: jdbc:hive2://master:10000> create table k_user(kid int,kname string,kage int) row format delimited fields terminated by ',' location '/t';
No rows affected (0.558 seconds)

0: jdbc:hive2://master:10000> show tables;
+-----------+
| tab_name  |
+-----------+
| k_user    |
+-----------+
1 row selected (0.114 seconds)

0: jdbc:hive2://master:10000> select * from k_user;
+-------------+---------------+--------------+
| k_user.kid  | k_user.kname  | k_user.kage  |
+-------------+---------------+--------------+
| 1           | linjiangyu    | 20           |
| 2           | lintian       | 20           |
| 3           | k             | 20           |
+-------------+---------------+--------------+
3 rows selected (3.141 seconds)

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • hadoop+spark+zookeeper分布式集群部署
    • 1.环境准备
      • 2.搭建
      相关产品与服务
      云数据库 MySQL
      腾讯云数据库 MySQL(TencentDB for MySQL)为用户提供安全可靠,性能卓越、易于维护的企业级云数据库服务。其具备6大企业级特性,包括企业级定制内核、企业级高可用、企业级高可靠、企业级安全、企业级扩展以及企业级智能运维。通过使用腾讯云数据库 MySQL,可实现分钟级别的数据库部署、弹性扩展以及全自动化的运维管理,不仅经济实惠,而且稳定可靠,易于运维。
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档