本周最佳学术研究
Google还提出了一种用来解决一些对话助手领域挑战的方法:利用对话架构来指导构建虚拟助手。该方法通用于所有服务和领域的模型,且没有特定于领域的参数。 在现有数据集无法充分描述现实世界时,SGD数据集将能很大地帮助到我们。与此同时,它还通过简化新服务和API与大规模虚拟助手进行集成,为虚拟助手提供可扩展的建模方法。该数据集还被设计为在大型虚拟助手中用于意图预测、状态跟踪、插槽填充和语言生成以及其他更多任务的有效测试平台。 原文: https://arxiv.org/pdf/1909.05855.pdf 文本转图像过程中语意对象准确性的研究 在本文中,研究人员介绍了一种新的GAN架构(OPGAN),该架构可以根据一些文本图像描述对单个对象进行建模。他们通过向“生成器”和“鉴别器”添加对象路径来实现此目的,这些生成器和鉴别器以不同的分辨率和比例学习单个对象的特征。基于定量和定性评估,该模型持续改进了基线结构。此外,它以通用的定量评估指标获得了目前业界最优秀的结果,并增加了对图像生成过程的控制。
他们还引入了一种称为语义对象准确度(SOA)的新评估指标,该指标可评估模型在复杂场景中生成单个对象的能力。新的SOA评估可以更详细地评估文本转图像的效果,与此同时它还能检测单个对象失败和成功的具体细节。 文本转图像在现实生活中有许多实际应用,包括照片编辑或生成计算机辅助内容等等。尽管某些模型可以对几个最常见的对象实现高精度转换,但在对稀有对象或不具有易于识别外表特征的对象进行建模时,现有的所有模型均会失败。 本文中提出的SOA是一个评估文本转图像模型的重要指标,因为它提供了有关不同对象类和图像标题更详细的信息,这对于构建良好的生成模型和指导未来的模型改进非常有价值。 代码传送门: https://github.com/tohinz/semantic-object-accuracy-for-generative-text-to-image-synthesis 原文: https://arxiv.org/abs/1910.13321v1 基于双重情感的假新闻检测框架 在这篇论文中,研究人员研究了在虚假新闻检测中学习双重情感的问题,并提出了一个新的基于双重情感的虚假新闻检测框架(DEAN)。 DEAN由三个部分组成。第一个模块分析发布者的信息,其中包括新闻内容中的语义和情感信息;第二个部分是注释模块,用于捕获用户的语义和情感信息;第三个是伪造新闻的预测组件,它将新闻内容和用户评论中得到的潜在表示融合在一起,以此判定这一新闻是否为伪造。
该框架可以分别为发布者和用户学习内容和情感表示。DEAN还能够同时利用双重情感表示来检测假新闻。 假新闻的产生和传播会带来很多有害的社会后果。我们需要努力构建自动有效的检测假新闻的工具。而这一最新提出的DEAN框架可以捕获和整合双重情感,通过学习新闻来检测假新闻。在使用微博和Twitter数据集进行评估时,DEAN优于现有的几种最新的假新闻检测方法,这也证明了其有效性。 原文: https://arxiv.org/abs/1903.01728v2 用胶囊网络检测虚假图像和视频 针对DeepFake所提出的对策有不少,但它们大多针对特定领域,并且在应用于其它领域或面对新的攻击时丧失有效性。 本文介绍了一种胶囊网络(capsule network),它可以利用印刷图像和使用深度学习创建的回放视频来检测各种DeepFake的攻击。与具有相似性能的传统卷积神经网络相比,胶囊网络运用的参数要少得多。 此外,研究人员首次通过详细分析和可视化解释了将胶囊网络应用于法医学问题背后的原理。
这一胶囊取证方法可以应用于数字图像和视频取证,包括检测计算机操作/生成的图像和视频以及检测演示攻击。 该方法在使用较少参数的情况下,在测试任务中等效于或优于目前最先进的方法,从而极大降低了计算成本。 原文: https://arxiv.org/abs/1910.12467v2
生成对抗网络的前世今生
前沿的划分将文献组织成可接近的区块,最终显示出该领域是如何演变的。这项工作也以表格形式列出了该领域先前的研究,重点集中在其中的一些前沿,从而使研究人员建议用更完整、更全面的概述来填补其留下的空白。 据谷歌学术称,Goodfellow等人的开创性论文《生成对抗网络(Generative Adversarial Nets)》被引用了12000多次,这个趋势自2017年起有了显著提高。因此,有必要对相关作品的演变进行调查。这项工作对GAN进行了简单回顾,目的是成为其大量文献的切入点。同时,这项工作还着眼于帮助研究人员们更新他们的技术。 原文: https://arxiv.org/abs/1910.13076v1、
数据集
AI大事件
专栏作者介绍 Christopher Dossman是Wonder Technologies的首席数据科学家,在北京生活5年。他是深度学习系统部署方面的专家,在开发新的AI产品方面拥有丰富的经验。除了卓越的工程经验,他还教授了1000名学生了解深度学习基础。 LinkedIn: https://www.linkedin.com/in/christopherdossman/