前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >学界 | 人工智能的圣杯:关于可解释AI(XAI)的一切

学界 | 人工智能的圣杯:关于可解释AI(XAI)的一切

作者头像
大数据文摘
发布于 2018-12-13 10:01:04
发布于 2018-12-13 10:01:04
6460
举报
文章被收录于专栏:大数据文摘大数据文摘

大数据文摘出品

编译:江泽斌、韦振琛、钱天培

在过去十年间,无数个人工智能解决方案在各大企业得到部署。

智能受众评测系统、智能财务合规系统、智能人员招聘系统,不一而足。

这期间,在企业客户却也始终存在一种怀疑态度:AI系统做出的产品部署是否真的值得被信赖呢?

在我看来,这也是企业人工智能要着力攻克的下一个难题。

错误的客户流失预测会使企业失去一个重要的客户,而错误的金融交易分类会使企业蒙受资金损失。实际上,客户对人工智能模型的精确度不是特别在意,他们更担心的是数据科学家们无法解释的一个问题:“我如何相信它做出的决策?”

AI系统--我如何信任它们?

在大多数支持AI的数字化转型中,客户喜欢让他们的系统拥有AI的能力以实现某些商业价值主张。另一方面,大多数数据科学家则追求使用最流行的算法(如DNN/GAINS/DRN等)。遗憾的是,他们都忘记了在决策制定过程中的问责机制和信任机制中存在着一个关键因素。

在现实生活中,每一个决策,无论是由机器还是低级员工又或是首席执行官做出的,为了达到提高整体的业务水平的目的,都要通过定期的审查,来解释他们的决定。这就产生了人工智能的新兴分支,称为“可解释的人工智能”(XAI)。

什么是可解释的AI(XAI)?

XAI是人工智能的一个新兴分支,用于解释人工智能所做出的每一个决策背后的逻辑。下图是对一个完整AI决策流程的简单描述。

除了对上述问题提供解决方案之外,XAI还具有更深层的业务优势,例如:

  • 改善AI模型的性能。因为XAI的解释有助于找到数据和特征行为中的问题。
  • 更好的决策部署。因为XAI的解释为中间人提供了额外的信息和信心,使其可以可以明智而果断地行动。
  • 提供一种控制感。因为AI系统的所有者清楚地知道其AI系统行为和边界的杠杆。
  • 提供一种安全感。因为每一个决定都需要通过安全指南,且对违规行为还会发出警告。
  • 与利益相关者建立信任关系。他们可以清晰看到每一个决策背后的逻辑推理。
  • 可监控由于训练数据偏差导致的道德问题和违规。
  • 提供更好的机制来遵循组织内的问责要求,以进行审计和其他目的。
  • 更好地遵守监管要求(比如《通用数据保护条例》GDPR),其中要求一个系统必须具有“解释权”。

AI系统部署中的角色

要实现可解释AI,我认为关键不在于工具和技术,而在于人类在这些人工智能系统中所扮演的角色。从广义上讲,我们可以用三个方面定义他们:

训练者--训练系统达到预期的功能行为

解释者-解释系统做出的决定

维护者-维持AI系统对业务KPI的效用

训练者

客户语言训练师

*教AI系统体会言外之意,例如检测讽刺

智能机器交互建模师

*学会员工行为,例如,一个AI系统可以从会计行为中学习如何自动匹配支出款项和发票。

*世界观训练师

使AI系统拥有全球化的观点。当做决定时不同文化的观点都要被考虑,比如判断一个算法是否“公平”

解释者

*背景设计师

根据业务背景,正在处理的任务,或个人或专业或文化等因素的不同设计更好的决策。

*透明度分析师

对使用不同类型的AI算法的不透明度(以及对业务的相应影响)进行分类,并对该信息库存进行维护

*AI落地策略

决定是否对特定的应用部署AI系统(或是应用传统的规则引擎和脚本)

维护者

*自动化伦理分析师

评估智能机器的非经济影响,包括正面和负面的

*自动化经济分析师

评估性能不良机器的成本

*机器关系管理者

"推广"在业务中表现良好的算法,并“降级”性能较差的算法

对于训练者和维护者的角色来说,他们有大量的工具可以使用。但对解释者来说,情况就不那么乐观了。人工智能/机器学习算法在本质上是著名的黑箱理论的一种,因为它的基于训练数据的大量非线性性质的权重和偏差的学习机制。因此,解释者的任务变得异常艰难。

XAI--关键维度

XAI有三个关键维度:合理的,可追踪的,可理解的。

合理的AI:能够理解每个预测背后的推理。

可追踪的AI:追踪预测过程的能力,可从数学算法的逻辑到数据的本质。

可理解的AI:完全理解做出AI决策所基于的模型。

XAI-设计原则

将XAI从概念转化为部署AI解决方案的8个原则如下

设计

一个着眼于社会影响力的AI

定义

数据集的出处,使用和保护标准

测试

系统发布前要进行全面测试

使用

使用透明

监控

发布后要严格监控

培训

工作能力培训和再培训

保护

隐私数据

构建

审计算法的工具和标准

XAI-主要技巧

XAI有两个主要技巧:

已知模型技巧:在这里有两类技巧。第一类技巧旨在解释现有的ML算法,第二类技巧则旨在研究新的白盒模型,以获得完全解释的能力。

未知模型技巧:通过入侵操作模型而在操作模型之外工作。一种称为LIME的技术主要用于估计决策的局部边界。

我在过去的经历中广泛使用了LIME库,加上自然语言生成技术,为维护者和操作者进行了叙述。

下面给出了当下算法精确度和可解释性的关系图

XAI的未来:

XAI领域有很好的发展前景,可以帮助企业解决AI的不足。例如:

精确的模型:XAI可同时支持维护者和训练者改进他们的模型,并使其持续下去。

值得信赖的模型:当XAI使得AI内部工作透明化时,XAI将有助于建立企业和其他监管行业的信心。

自然语言解释:XAI将通过自然语言(语音或文本)来解释它的决定,而不是通过分析表或复杂的仪表盘。这会要求自然语言解释与XAI的启发式探索结合起来使用。

对抗性使用(滥用):XIA的LIME技术和深度学习的GAIN技术,可以用于在外部破译给定的AI模型。这将导致组织需要使用政策和法规以及多层安全措施来保护其AI模型。

与机器协作:XAI将建立起信任的桥梁,使人类能够在方方面面中适应并习惯与机器智能一起工作。

相关报道:

https://www.kdnuggets.com/2018/10/enterprise-explainable-ai.html

【今日机器学习概念】

Have a Great Definition

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-11-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据文摘 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
ML 模型不等于“黑盒”:explainable AI 可解释的人工智能
可解释的人工智能(explainable AI) 是机器学习领域热门话题之一。机器学习模型通常被认为是“黑盒”,具有内部不可知的特性。因此这些模型在应用时,往往需要首先获取人们的信任、明确其误差的具体含义、明确其预测的可靠性。本文中,我们将探讨 explainable AI 的内涵及其重要性,并且提供了几个案例以帮助理解。
deephub
2020/05/09
1K0
ML 模型不等于“黑盒”:explainable AI 可解释的人工智能
观点 | 可解释的人工智能:让机器解释自己,减少算法产生的偏见
AI 科技评论按:2018 年 5 月 25 日,「通用数据保护条例」(GDPR)在整个欧盟范围内生效,要求对组织如何处理个人数据进行彻底改变。若违反 GDPR 条例的限制,相关组织必须支付高达 2000 万欧元或其全球收入 4%的罚款(以较高者为准),对威慑大多数违规行为具有很重要的意义。
AI科技评论
2018/07/26
8620
观点 | 可解释的人工智能:让机器解释自己,减少算法产生的偏见
可解释人工智能: 构建可解释机器学习系统,330页pdf
https://www.manning.com/books/interpretable-ai
数据STUDIO
2023/09/04
4140
可解释人工智能: 构建可解释机器学习系统,330页pdf
人工智能(XAI)可解释性的研究进展!
本文从数据为中心的角度,研究了数据收集、处理和分析如何有助于可解释的人工智能(XAI)。将现有工作分为三类,分别服务于对深度模型的解释、对训练数据的启示和对领域知识的洞察,并提炼出针对不同模式的数据挖掘操作和DNN行为描述符的数据挖掘方法,提供了一个全面的、以数据为中心的XAI从数据挖掘方法和应用的角度进行的考察。
算法进阶
2024/06/13
4870
人工智能(XAI)可解释性的研究进展!
XAI:探索AI决策透明化的前沿与展望
AI系统的决策过程往往是一个复杂的“黑箱”过程,即使是设计这些系统的工程师也很难完全理解其中的逻辑。这种不透明性导致了两个问题:一是人们对AI的决策缺乏信任,担心其可能带来的潜在风险;二是AI系统本身可能存在的伦理和偏见问题。
屿小夏
2024/02/06
4770
XAI:探索AI决策透明化的前沿与展望
【Manning新书】可解释人工智能: 构建可解释机器学习系统
来源:专知本文约800字,建议阅读5分钟可解释性AI是打开AI黑盒的解释性技术的实践指南。 可解释性AI是打开AI黑盒的解释性技术的实践指南。本实用指南将前沿研究简化为透明和可解释的AI,提供实用的方法,您可以轻松地用Python和开源库实现。从所有主要的机器学习方法的例子,这本书演示了为什么AI的一些方法是如此的不透明,教你识别你的模型已经学习的模式,并提出了建立公平和公正的模型的最佳实践。当你完成这一任务时,你将能够提高你的AI在训练中的表现,并构建鲁棒系统来抵消偏差、数据泄漏和概念漂移带来的错误。
数据派THU
2022/03/04
3420
算法“黑箱”下AI信任存疑,可解释性AI迎来发展“元年”
AI一路发展至今,对其不信任的言论始终如影随形,究其根源,还是由于人们对AI在决策过程中的不了解引起的。
科技云报道
2022/04/16
6380
算法“黑箱”下AI信任存疑,可解释性AI迎来发展“元年”
【综述专栏】可解释人工智能中基于梯度的特征归因
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
马上科普尚尚
2024/03/25
7490
【综述专栏】可解释人工智能中基于梯度的特征归因
趣味科普|可解释性人工智能
可解释性人工智能 PART.01 概述 1 可解释性人工智能(XAI)定义 随着机器学习和人工智能技术在各个领域中的迅速发展和应用,向用户解释算法输出的结果变得至关重要。人工智能的可解释性是指人能够理解人工智能模型在其决策过程中所做出的选择,包括做出决策的原因,方法,以及决策的内容[1]。简单的说,可解释性就是把人工智能从黑盒变成了白盒。 2 研究的作用 可解释性是现在人工智能在实际应用方面面临的最主要的障碍之一。人们无法理解或者解释为何人工智能算法能取得这么好的表现。可解释性人工智能模型的作用
数据派THU
2023/03/29
9650
趣味科普|可解释性人工智能
解释性AI(XAI)
解释性AI,也称为XAI(Extended AI),是一种综合了多种AI技术的智能系统或工具,旨在帮助人们理解和解释数据、信息和知识,以辅助决策制定。XAI可以应用于各种领域,包括但不限于预测分析、风险评估、医疗保健、教育、人力资源、项目管理等。
红目香薰
2024/02/01
4140
可解释性人工智能(Xai)研究:对医学Xai的展望
原文题目:A Survey on Explainable Artificial Intelligence (XAI): Towards Medical XAI
Jarvis Cocker
2019/07/18
2K0
XAI——可解释的人工智能
机器学习的成功促进了人工智能应用的新潮流,这些应用为各个领域提供了广泛的好处。但是,许多AI系统无法向人类用户解释其自主决策和行动。对于某些AI应用程序,解释可能不是必需的,并且一些AI研究人员认为,对解释的强调是放错了位置,太难实现甚至可能是不必要的。然而,在国防、医药、金融、法律等许多关键应用,解释是必要的,便于用户理解,信任,并有效地管理这些新的人工智能伙伴。
AiTechYun
2019/12/23
2.7K0
XAI——可解释的人工智能
为什么人工智能需要可解释性?
👆点击“博文视点Broadview”,获取更多书讯 人工智能技术与系统已经开始频繁地出现在人们的工作和生活中,智能财务系统、智能招聘系统和智能推荐系统等不一而足——这些智能系统正在逐步改变社会生活的方方面面,影响甚至决定人的命运。 似乎在我们还没弄明白人工智能到底是怎么一回事的时候,人工智能的实际应用就已经跑得很远了。 然而,我们真的了解人工智能吗?到底什么是人工智能?人工智能的决策机制到底是怎样工作的?它今后将朝着怎样的方向发展? 这些问题都与人工智能系统的可解释性(Explainability)息息
博文视点Broadview
2022/05/27
7010
为什么人工智能需要可解释性?
DARPA可解释AI研究(XAI计划)的4年回顾与经验总结
DARPA(美国防部高级研究计划局)于 2015 年制定了可解释人工智能 (XAI) 计划,目标是使最终用户能够更好地理解、信任和有效管理人工智能系统。2017年,为期4年的XAI研究计划启动。现在,随着 XAI 在 2021 年结束,本文总结和反思了 XAI 项目的目标、组织和研究进展。 本文转载自丨智源社区 作者丨David Gunning, Eric Vorm, Jennifer Yunyan Wang, Matt Turek 编译丨牛梦琳 摘要: 从项目管理人员和评估人员的角度,对国防高级研究计划局
AI科技评论
2022/03/03
1.7K0
使用Python实现深度学习模型:模型解释与可解释人工智能
在深度学习领域,模型解释和可解释性人工智能(XAI)正变得越来越重要。理解深度学习模型的决策过程对于提高模型的透明度和可信度至关重要。本文将详细介绍如何使用Python实现模型解释和可解释性人工智能,包括基本概念、常用方法、代码实现和示例应用。
Echo_Wish
2024/07/07
1690
XAI系列一:可信任安全智能与可解释性
AI研究与应用不断取得突破性进展,然而高性能的复杂算法、模型及系统普遍缺乏决策逻辑的透明度和结果的可解释性,导致在涉及需要做出关键决策判断的国防、金融、医疗、法律、网安等领域中,或要求决策合规的应用中,AI技术及系统难以大范围应用。XAI技术主要研究如何使得AI系统的行为对人类更透明、更易懂、更可信。
绿盟科技研究通讯
2019/12/11
2.4K0
XAI系列一:可信任安全智能与可解释性
Nat. Mach. Intell. | 可解释性人工智能(xAI)遇上药物发现
今天给大家介绍瑞士苏黎世联邦理工学院化学与应用生物科学系 Gisbert Schneider等人在Nature Machine Intelligence上发表的文章“Drug discovery with explainable artificial intelligence”。本文综述总结了可解释人工智能最突出的算法概念,并预测了未来的机会、潜在的应用以及一些剩余的挑战。希望能为可解释人工智能技术的发展和接受做出更多的努力。
DrugAI
2021/02/02
7440
Nat. Mach. Intell. | 可解释性人工智能(xAI)遇上药物发现
6个机器学习可解释性框架!
来源:DeepHub IMBA本文约1700字,建议阅读5分钟在本文中,将介绍6个用于机器学习可解释性的Python框架。 随着人工智能的发展为了解决具有挑战性的问题,人们创造了更复杂、更不透明的
数据派THU
2022/10/09
6410
6个机器学习可解释性框架!
如何评估可解释的人工智能系统给出的解释的质量
https://link.springer.com/article/10.1007/s13218-020-00636-z
CreateAMind
2023/09/01
3770
如何评估可解释的人工智能系统给出的解释的质量
AI决策的解构与实践:初探可解释性技术(XAI)
可解释人工智能(Explainable Artificial Intelligence, XAI)是指智能体以一种可解释、可理解、人机互动的方式,与人工智能系统的使用者、受影响者、决策者、开发者等,达成清晰有效的沟通,以取得人类信任,同时满足监管要求。
鲲志说
2025/04/07
2210
推荐阅读
相关推荐
ML 模型不等于“黑盒”:explainable AI 可解释的人工智能
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档