前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >R语言独立成分分析fastICA、谱聚类、支持向量回归SVR模型预测商店销量时间序列可视化

R语言独立成分分析fastICA、谱聚类、支持向量回归SVR模型预测商店销量时间序列可视化

作者头像
拓端
发布2024-12-30 15:02:38
发布2024-12-30 15:02:38
7800
代码可运行
举报
文章被收录于专栏:拓端tecdat拓端tecdat
运行总次数:0
代码可运行

本文利用R语言的独立成分分析(ICA)、谱聚类(CS)和支持向量回归 SVR 模型帮助客户对商店销量进行预测

首先,分别对商店销量的历史数据进行了独立成分分析,得到了多个独立成分;其次,利用谱聚类方法将商店销量划分成了若干类,并将每个类的特征进行了提取;最后,利用 SVR模型对所有的商店销量进行预测。实验结果表明,利用 FastICA、 CS和 SVR模型能够准确预测商店销量。

读取数据

代码语言:javascript
代码运行次数:0
运行
复制
read.csv("train_final.csv")
head(data)

独立成分分析方法(fastICA)

首先对于d维的随机变量 x∈Rd×1 ,我们假设他的产生过程是由相互独立的源 s∈Rd×1 ,通过 A∈Rd×d 线性组合产生的x=As

如果s的服从高斯分布的,那么故事结束,我们不能恢复出唯一的s,因为不管哪个方向都是等价的。而如果s是非高斯的,那么我们希望找到w从而 s=wTx ,使得 s 之间的相互独立就可以恢复出s了,我将在后面指出,这等价于最大化每个 s 的非高斯性。

采用独立成分分析方法(fastICA),得到矩阵W,A和ICs等独立成分结果(是否需要pca降维?)。

代码语言:javascript
代码运行次数:0
运行
复制
reeplot(prcomp(
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-12-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 拓端数据部落 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 读取数据
  • 独立成分分析方法(fastICA)
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档