模型评估与选择是数据科学面试中的核心环节,它考验候选者对模型性能的理解、评估方法的应用以及决策依据的逻辑。本篇博客将深入浅出地梳理Python模型评估与选择面试中常见的问题、易错点及应对策略,配以代码示例,助您在面试中脱颖而出。
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, confusion_matrix
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
# 假设已有DataFrame df,包含特征 'features' 和目标变量 'target'
# 数据预处理与划分
X = df['features']
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 模型训练与评估
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
# 基础评估指标计算
acc = accuracy_score(y_test, y_pred)
prec = precision_score(y_test, y_pred)
rec = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
# AUC-ROC计算(二分类问题)
y_prob = model.predict_proba(X_test)[:, 1]
roc_auc = roc_auc_score(y_test, y_prob)
# 交叉验证评估
cv_scores = cross_val_score(model, X, y, cv=5, scoring='accuracy')
# 网格搜索与超参数调优
param_grid = {'C': np.logspace(-3, 3, 7), 'penalty': ['l1', 'l2']}
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
best_score = grid_search.best_score_
# (更多示例根据实际问题补充)
通过扎实掌握模型评估与选择的基本概念、灵活运用评估方法、有效规避常见误区,并结合代码示例展现实践能力,您将在Python模型评估与选择面试中展现出专业且严谨的数据科学素养。上述代码示例仅为部分操作,实际面试中可能涉及更复杂的场景和方法,请持续丰富自己的知识库和实践经验。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。