首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >腾讯AI Lab宣布将于9月底开源“Tencent ML-Images”项目

腾讯AI Lab宣布将于9月底开源“Tencent ML-Images”项目

作者头像
腾讯技术工程官方号
发布于 2018-09-11 10:23:58
发布于 2018-09-11 10:23:58
4K0
举报

今日,腾讯AI Lab宣布将于9月底开源“Tencent ML-Images”项目,该项目由多标签图像数据集ML-Images,以及业内目前同类深度学习模型中精度最高的深度残差网络ResNet-101构成。

该项目的开源,是腾讯AI Lab在计算机视觉领域所累积的基础能力的一次释放,为人工智能领域的科研人员和工程师提供充足的高质量训练数据,及简单易用、性能强大的深度学习模型,促进人工智能行业共同发展。

腾讯AI Lab此次公布的图像数据集ML-Images,包含了1800万图像和1.1万多种常见物体类别,在业内已公开的多标签图像数据集中规模最大,足以满足一般科研机构及中小企业的使用场景。此外,腾讯AI Lab还将提供基于ML-Images训练得到的深度残差网络ResNet-101。该模型具有优异的视觉表示能力和泛化性能,在当前业内同类模型中精度最高,将为包括图像、视频等在内的视觉任务提供强大支撑,并助力图像分类、物体检测、物体跟踪、语义分割等技术水平的提升。

以深度神经网络为典型代表的深度学习技术已经在很多领域充分展现出其优异的能力,尤其是计算机视觉领域,包括图像和视频的分类、理解和生成等重要任务。然而,要充分发挥出深度学习的视觉表示能力,必须建立在充足的高质量训练数据、优秀的模型结构和模型训练方法,以及强大的的计算资源等基础能力之上。

各大科技公司都非常重视人工智能基础能力的建设,都建立了仅面向其内部的大型图像数据集,例如谷歌的JFT-300M和Facebook的Instagram数据集。但这些数据集及其训练得到的模型都没有公开,对于一般的科研机构和中小企业来说,这些人工智能基础能力有着非常高的门槛。

当前业内公开的最大规模的多标签图像数据集是谷歌公司的Open Images, 包含900万训练图像和6000多物体类别。腾讯AI Lab此次开源的ML-Images数据集包括1800万训练图像和1.1万多常见物体类别,或将成为新的行业基准数据集。除了数据集,腾讯AI Lab团队还将在此次开源项目中详细介绍:

(1) 大规模的多标签图像数据集的构建方法,包括图像的来源、图像候选类别集合、类别语义关系和图像的标注。在ML-Images的构建过程中,团队充分利用了类别语义关系来帮助对图像的精准标注。

(2) 基于ML-Images的深度神经网络的训练方法。团队精心设计的损失函数和训练方法,可以有效抑制大规模多标签数据集中类别不均衡对模型训练的负面影响。

(3) 基于ML-Images训练得到的ResNet-101模型,具有优异的视觉表示能力和泛化性能。通过迁移学习,该模型在ImageNet验证集上取得了80.73%的top-1分类精度,超过谷歌同类模型(迁移学习模式)的精度,且值得注意的是,ML-Images的规模仅为JFT-300M的约1/17。这充分说明了ML-Images的高质量和训练方法的有效性。详细对比如下表。

注:微软ResNet-101模型为非迁移学习模式下训练得到,即1.2M预训练图像为原始数据集ImageNet的图像。

腾讯AI Lab此次开源的“Tencent ML-Images”项目,展现了腾讯在人工智能基础能力建设方面的努力,以及希望通过基础能力的开放促进行业共同发展的愿景。

“Tencent ML-Images”项目的深度学习模型,目前已在腾讯多项业务中发挥重要作用,如“天天快报”的图像质量评价与推荐功能。如下图所示,天天快报新闻封面图像的质量得到明显提高。

优化前(左图)&优化后(右图)

此外,腾讯AI Lab团队还将基于Tencent ML-Images的ResNet-101模型迁移到很多其他视觉任务,包括图像物体检测,图像语义分割,视频物体分割,视频物体跟踪等。这些视觉迁移任务进一步验证了该模型的强大视觉表示能力和优异的泛化性能。“Tencent ML-Images”项目未来还将在更多视觉相关的产品中发挥重要作用。

自2016年腾讯首次在GitHub上发布开源项目(https://github.com/Tencent),目前已累积开源覆盖人工智能、移动开发小程序等领域的57个项目。为进一步贡献开源社区,腾讯相继加入Hyperledger、LF Networking和开放网络基金会,并成为LF深度学习基金会首要创始成员及Linux基金会白金会员。作为腾讯“开放”战略在技术领域的体现,腾讯开源将继续对内推动技术研发向共享、复用和开源迈进,向外释放腾讯研发实力,为国内外开源社区提供技术支持,注入研发活力。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-09-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 腾讯技术工程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
深入了解Deepseek模型的最佳三篇论文
DeepSeek-R1:通过强化学习提升大型语言模型的推理能力。 2025年1月发布,提出了一种使用强化学习而非监督学习的方法,显著提升了语言模型在数学和逻辑推理任务中的表现,开辟了新的研究方向。
致Great
2025/02/09
1.6K0
深入了解Deepseek模型的最佳三篇论文
MEDGO:一个中文医疗大语言模型,已在在上海东方医院落地 !
医疗服务对每个人的福祉至关重要,在保障人类生命和健康方面发挥关键作用,并在改善人们整体健康状况方面具有决定性价值。然而,医疗保健领域面临几个关键挑战。一个重要问题是不同地区医疗服务质量的巨大差异,限制了患者获得持续、高质量医疗保健的途径。这种区域差异因医疗专业行人显著短缺和分布不均而加剧。熟练医疗行人的短缺尤其严重,尤其是在资源有限的偏远地区和基层卫生保健设施。这些挑战严重影响医疗服务的获得性和公平性。解决这些问题需要技术创新,例如应用人工智能(AI),以提高护理交付的效率和质量。通过集成像大型语言模型这样的AI技术,医疗系统有可能弥合这些差距,为服务不足的地区提供更一致、可靠、便捷的医疗服务。
AIGC 先锋科技
2024/11/25
1.4K0
MEDGO:一个中文医疗大语言模型,已在在上海东方医院落地 !
从零训练一个多模态LLM:预训练+指令微调+对齐+融合多模态+链接外部系统
本文尝试梳理一个完整的多模态LLM的训练流程。包括模型结构选择、数据预处理、模型预训练、指令微调、对齐、融合多模态以及链接外部系统等环节。
zenRRan
2023/08/22
7.4K0
从零训练一个多模态LLM:预训练+指令微调+对齐+融合多模态+链接外部系统
大模型(LLMs)算法工程师相关的面试题和参考答案
需要注意的是,复读机问题是大型语言模型面临的一个挑战,解决这个问题是一个复杂的任务,需要综合考虑数据、训练目标、模型架构和生成策略等多个因素。目前,研究人员和工程师们正在不断努力改进和优化大型语言模型,以提高其生成文本的多样性和创造性。
机器学习AI算法工程
2023/11/13
7.7K0
大模型(LLMs)算法工程师相关的面试题和参考答案
LLM资料大全:文本多模态大模型、垂直领域微调模型、STF数据集、训练微调部署框架、提示词工程等
自ChatGPT为代表的大语言模型(Large Language Model, LLM)出现以后,由于其惊人的类通用人工智能(AGI)的能力,掀起了新一轮自然语言处理领域的研究和应用的浪潮。尤其是以ChatGLM、LLaMA等平民玩家都能跑起来的较小规模的LLM开源之后,业界涌现了非常多基于LLM的二次微调或应用的案例。本项目旨在收集和梳理中文LLM相关的开源模型、应用、数据集及教程等资料,目前收录的资源已达100+个!
汀丶人工智能
2024/04/29
3.3K0
LLM资料大全:文本多模态大模型、垂直领域微调模型、STF数据集、训练微调部署框架、提示词工程等
复旦&北大&上海交大开源 Chinese-Tiny-LLM/ | 以中文为中心的大语言模型 !
在语言智能新兴领域,大型语言模型(LLM)已成为自然语言处理(NLP)的基石,展示了在理解和生成人类语言方面的卓越能力。这些模型主要在英语数据集上进行训练,显著推进了计算语言学的发展,并在各种任务上设定了新的基准。然而,对英语的这种强调掩盖了人类语言的固有多样性,限制了LLM适用性和创新的范围。从最初就融入非英语语言的复杂性及细微差别的LLM的发展,仍然是一个相对未探索的领域。
AIGC 先锋科技
2024/07/08
4870
复旦&北大&上海交大开源 Chinese-Tiny-LLM/ |  以中文为中心的大语言模型 !
分享最新10篇大模型论文,涉及应用、多模态、推理增强、剪枝等热点话题!
好久没有给大家梳理文章了,今天分享8篇有关大模型(LLMs)的最新研究进展,其中涉及涉及大模型推理、应用、方法论、多模态、剪枝等热门研究方向。全部论文获取方式,后台回复:20240414
ShuYini
2024/05/06
3.6K0
分享最新10篇大模型论文,涉及应用、多模态、推理增强、剪枝等热点话题!
后训练时代如何延续Scaling Law?这是你该读的LLM后训练综述
近日,一份围绕 LLM 后训练的综述报告收获了不少好评,其整理相关论文和工具的资源库已经收获了超过 700 star。
机器之心
2025/05/02
1550
后训练时代如何延续Scaling Law?这是你该读的LLM后训练综述
一篇关于LLM指令微调的综述
指令微调(IT)是提高大型语言模型(LLM)能力和可控性的关键技术。其本质是指在由(INSTRUCTION, OUTPUT)对组成的数据集上以监督的方式进一步训练LLM的过程,它弥合了LLM的下一个词预测目标与用户让LLM遵循人类指令的目标之间的差距。这篇文章对现有研究进行了系统的回顾、包括IT的一般方法、IT数据集的构建、IT模型的训练、以及不同模式,领域和应用的应用。
zenRRan
2023/09/11
7.3K0
一篇关于LLM指令微调的综述
从零详细地梳理一个完整的 LLM 训练流程
在这篇文章中,我们将尽可能详细地梳理一个完整的 LLM 训练流程。包括模型预训练(Pretrain)、Tokenizer 训练、指令微调(Instruction Tuning)等环节。
zenRRan
2023/08/22
6.6K0
从零详细地梳理一个完整的 LLM 训练流程
万字长文解构DeepSeek V1/V2/V3/R1进化史:从算法革命到推理涌现!
在今年的春节期间,DeepSeek 火出了圈。凭借 DeepSeek-V3 与 DeepSeek-R1 的创新技术和卓越表现,DeepSeek 迅速成为了行业内外的焦点。不管是技术专家还是普通用户,都对 DeepSeek 赞不绝口。我们特别准备了这篇技术科普文章,期望无论你是不是技术同学,都能够读懂 DeepSeek。
腾讯云开发者
2025/02/27
1.1K0
万字长文解构DeepSeek V1/V2/V3/R1进化史:从算法革命到推理涌现!
大型语言模型的幻觉研究|减轻及避免大模型LLM幻觉(二)
“ 本文及上一篇综述了最近关于语言模型中幻觉问题的研究进展,主要集中在ChatGPT发布后的研究。文章讨论了如何评估、追踪和消除幻觉,并探讨了现有挑战和未来方向。希望本文能为对LLM幻觉问题感兴趣的朋友提供有价值的资源,促进LLM的实际应用。”
技术人生黄勇
2024/07/19
9760
大型语言模型的幻觉研究|减轻及避免大模型LLM幻觉(二)
阿里千问团队提出AutoIF,让LLMs学会自我指导,简单有效,性能显著
这篇论文试图解决的问题是如何自动构建高质量的训练数据,以增强大型语言模型(LLMs)遵循复杂自然语言指令的能力。具体来说,论文指出了以下几个关键问题:
zenRRan
2024/07/04
6300
阿里千问团队提出AutoIF,让LLMs学会自我指导,简单有效,性能显著
每日论文速递 | 当缩放遇到LLM微调:数据、模型和微调方法的影响
摘要:虽然大型语言模型(LLM)通常采用微调来解锁其下游应用程序的功能,但我们对不同微调方法的归纳偏差(特别是缩放属性)的理解仍然有限。为了填补这一空白,我们进行了系统的实验,研究不同的缩放因子,包括LLM模型大小,预训练数据大小,新的微调参数大小和微调数据大小,是否以及如何影响微调性能。我们考虑两种类型的微调-全模型调整(FMT)和参数有效的调整(PET,包括即时调整和LoRA),并探讨其缩放行为的数据有限的制度,其中LLM模型的大小大大超过微调的数据大小。基于1B到16 B两组预训练的双语LLM,以及在双语机器翻译和多语种摘要基准测试上的实验,我们发现:1)LLM微调遵循基于幂的乘法联合缩放律,即微调数据大小与彼此缩放因子之间的比例关系; 2)LLM微调从LLM模型缩放中获得的收益大于预训练数据缩放,PET参数缩放通常无效;以及3)最优微调方法是高度任务和微调数据相关的。我们希望我们的研究结果可以帮助理解,选择和发展LLM微调方法。
zenRRan
2024/03/02
6470
每日论文速递 | 当缩放遇到LLM微调:数据、模型和微调方法的影响
小模型如何比肩大模型,北理工发布明德大模型MindLLM,小模型潜力巨大
大型语言模型 (LLMs) 在各种自然语言任务中展现出了卓越的性能,但是由于训练和推理大参数量模型需要大量的计算资源,导致高昂的成本,将大语言模型应用在专业领域中仍存在诸多现实问题。因此,北理团队先从轻量级别模型入手,最大程度发挥数据和模型的优势,立足更好地服务特定领域,减少下游任务的训练与推理成本。
机器之心
2023/10/29
1.4K0
小模型如何比肩大模型,北理工发布明德大模型MindLLM,小模型潜力巨大
【LLM训练系列03】关于大模型训练常见概念讲解
随着LLM学界和工业界日新月异的发展,不仅预训练所用的算力和数据正在疯狂内卷,后训练(post-training)的对齐和微调等方法也在不断更新。下面笔者根据资料整理一些关于大模型训练常见概念解释。
致Great
2024/12/20
8390
【LLM训练系列03】关于大模型训练常见概念讲解
DeepSeekMath:突破开放式语言模型中数学推理能力的极限,提出了GRPO,值得关注学习
由于数学推理具有复杂且结构化的特性,这对语言模型构成了重大挑战。在本文中,我们介绍了 DeepSeekMath 7B 模型,该模型在 DeepSeek-Coder-Base-v1.5 7B 模型的基础上,使用从 Common Crawl 获取的 1200 亿个与数学相关的标记,以及自然语言和代码数据继续进行预训练。在不依赖外部工具包和投票技术的情况下,DeepSeekMath 7B 在竞赛级 MATH 基准测试中取得了 51.7% 的优异成绩,接近 Gemini-Ultra 和 GPT-4 的性能水平。通过对 DeepSeekMath 7B 生成的 64 个样本进行自洽性验证,其在 MATH 基准测试上的准确率达到了 60.9%。DeepSeekMath 的数学推理能力归因于两个关键因素:首先,我们通过精心设计的数据选择流程,充分利用了公开可用的网络数据的巨大潜力。其次,我们引入了组相对策略优化(Group Relative Policy Optimization,GRPO)算法,这是近端策略优化(Proximal Policy Optimization,PPO)算法的一个变体,它在增强数学推理能力的同时,还能优化 PPO 的内存使用。
AI浩
2025/06/08
2060
DeepSeekMath:突破开放式语言模型中数学推理能力的极限,提出了GRPO,值得关注学习
开源模型进展盘点:最新Mixtral、Llama 3、Phi-3、OpenELM到底有多好?
首先,从最重要的话题开始:4 月发布的主要新模型。这一节将简要介绍 Mixtral、Llama 3 和 Phi-3。下一节将会更详细地介绍苹果的 OpenELM。
机器之心
2024/06/04
3440
开源模型进展盘点:最新Mixtral、Llama 3、Phi-3、OpenELM到底有多好?
复旦大学团队发布中文医疗健康个人助手,同时开源47万高质量数据集
随着远程医疗的兴起,在线问诊、咨询越发成为患者寻求便捷高效的医疗支持的首选项。近来大语言模型(LLM)展示出强大的自然语言交互能力,为健康医疗助手走进人们的生活带来了希望。
机器之心
2023/09/08
2.7K0
复旦大学团队发布中文医疗健康个人助手,同时开源47万高质量数据集
反思RLHF,如何更加高效训练有偏好的LLM
当前 LLM 蓬勃发展,各种模型和方法层出不穷,但总体看来,但是朝着以下3点目标前进:
ShuYini
2023/11/20
1.5K0
反思RLHF,如何更加高效训练有偏好的LLM
推荐阅读
深入了解Deepseek模型的最佳三篇论文
1.6K0
MEDGO:一个中文医疗大语言模型,已在在上海东方医院落地 !
1.4K0
从零训练一个多模态LLM:预训练+指令微调+对齐+融合多模态+链接外部系统
7.4K0
大模型(LLMs)算法工程师相关的面试题和参考答案
7.7K0
LLM资料大全:文本多模态大模型、垂直领域微调模型、STF数据集、训练微调部署框架、提示词工程等
3.3K0
复旦&北大&上海交大开源 Chinese-Tiny-LLM/ | 以中文为中心的大语言模型 !
4870
分享最新10篇大模型论文,涉及应用、多模态、推理增强、剪枝等热点话题!
3.6K0
后训练时代如何延续Scaling Law?这是你该读的LLM后训练综述
1550
一篇关于LLM指令微调的综述
7.3K0
从零详细地梳理一个完整的 LLM 训练流程
6.6K0
万字长文解构DeepSeek V1/V2/V3/R1进化史:从算法革命到推理涌现!
1.1K0
大型语言模型的幻觉研究|减轻及避免大模型LLM幻觉(二)
9760
阿里千问团队提出AutoIF,让LLMs学会自我指导,简单有效,性能显著
6300
每日论文速递 | 当缩放遇到LLM微调:数据、模型和微调方法的影响
6470
小模型如何比肩大模型,北理工发布明德大模型MindLLM,小模型潜力巨大
1.4K0
【LLM训练系列03】关于大模型训练常见概念讲解
8390
DeepSeekMath:突破开放式语言模型中数学推理能力的极限,提出了GRPO,值得关注学习
2060
开源模型进展盘点:最新Mixtral、Llama 3、Phi-3、OpenELM到底有多好?
3440
复旦大学团队发布中文医疗健康个人助手,同时开源47万高质量数据集
2.7K0
反思RLHF,如何更加高效训练有偏好的LLM
1.5K0
相关推荐
深入了解Deepseek模型的最佳三篇论文
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档