首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >盘点你“梦中情刊”的发文量及发文量最大的作者

盘点你“梦中情刊”的发文量及发文量最大的作者

作者头像
生信菜鸟团
发布于 2023-08-23 01:06:10
发布于 2023-08-23 01:06:10
29100
代码可运行
举报
文章被收录于专栏:生信菜鸟团生信菜鸟团
运行总次数:0
代码可运行

1-背景

感谢曾老师又是新一期的学徒作业~

作业灵感来源如下:

生物信息学权威期刊Bioinformatics发文量最大的是谁 (qq.com)

第一作者发表在Bioinformatics杂志上论文数top10 (qq.com)

作业内容:

同样的统计,更换一下杂志,好~

2-代码解读

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
library(pubmedR)  
api_key = NULL  
  
# pubmed一次只能下载小于1万条记录,这里分成两份  
query = '("Bioinformatics (Oxford, England)"[Journal]) AND (("1998"[Date - Publication] : "2014"[Date - Publication]))'  
res <- pmQueryTotalCount(query = query, api_key = api_key)  
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)  
  
query = '("Bioinformatics (Oxford, England)"[Journal]) AND (("2015"[Date - Publication] : "2023"[Date - Publication]))'  
res <- pmQueryTotalCount(query = query, api_key = api_key)  
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)  
  
m1 = pmApi2df(D1)  
m2 = pmApi2df(D2)  
m = rbind(m1, m2)  
  
df = df[df$DT == "JOURNAL ARTICLE", ]  
fa = gsub(";.*$", "", df$AF)  
sort(table(fa))

代码目的:

总结《Bioinformatics》杂志自创刊以来所有文章的一作,并对作者按照发文数量排序。

同样的条件,我们看一下其他顶刊究竟是谁发文最多吧

嘻嘻嘻,顺便还统计了期刊的发文量

先从CNS开始~

3-CNS

3.1- Cell

1974年创刊,创刊49年

截止检索,共2万多篇文章

排名作者,代码如下~

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#"Cell"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成两份
query = '("Cell"[Journal]) AND (("1974"[Date - Publication] : "1996"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Cell"[Journal]) AND (("1997"[Date - Publication] : "2015"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Cell"[Journal]) AND (("2016"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D3 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m3 = pmApi2df(D3)
m = rbind(m1, m2,m3)

df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
save(fa,file = "Cell.Rdata")
#load(file="Cell.Rdata")
head(sort(table(fa),decreasing = T),15)
# fa 
# HUNTER, T  BONETTA, LAURA 
# 76              15              11 
# LAWRENCE, P A        LEWIN, B SPIEGELMAN, B M 
# 10              10              10 
# WEINTRAUB, H         ORCI, L        KOZAK, M 
# 10               9               8 
# VALE, R D  CLEVELAND, D W        FUCHS, E 
# 8               7               7 
# HENIKOFF, S      KMIEC, E B    LAZARIDES, E 
# 7               7               7 

运行结果

检索前3, 看大佬从事的领域

3.1.1 HUNTER, T 蛋白

image.png

3.1.2 BONETTA, LAURA 科学评论?

image.png

3.1.3 LAWRENCE, P A 果蝇

image.png

3.2- Science

1880年创刊,共计143年

到目前,有18万文章

代码如下:

略长..

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#"Science (New York, N.Y.)"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录
query = '("Science (New York, N.Y.)"[Journal]) AND (("1880"[Date - Publication] : "1893"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1894"[Date - Publication] : "1911"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1912"[Date - Publication] : "1927"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D3 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)
save(D1,D2,D3,file = "Science_1_3.Rdata")

query = '("Science (New York, N.Y.)"[Journal]) AND (("1928"[Date - Publication] : "1939"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D4 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1940"[Date - Publication] : "1950"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D5 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1951"[Date - Publication] : "1961"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D6 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1962"[Date - Publication] : "1966"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D7 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1967"[Date - Publication] : "1971"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D8 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1972"[Date - Publication] : "1976"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D9 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1977"[Date - Publication] : "1980"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D10 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1981"[Date - Publication] : "1984"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D11 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1985"[Date - Publication] : "1988"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D12 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1989"[Date - Publication] : "1992"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D13 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1993"[Date - Publication] : "1996"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D14 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("1997"[Date - Publication] : "2001"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D15 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

# query = '("Science (New York, N.Y.)"[Journal]) AND (("1997"[Date - Publication] : "2001"[Date - Publication]))'
# res <- pmQueryTotalCount(query = query, api_key = api_key)
# D16 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("2002"[Date - Publication] : "2005"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D17 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("2006"[Date - Publication] : "2009"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D18 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("2010"[Date - Publication] : "2013"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D19 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("2014"[Date - Publication] : "2017"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D20 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Science (New York, N.Y.)"[Journal]) AND (("2018"[Date - Publication] : "2021"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D21 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)
query = '("Science (New York, N.Y.)"[Journal]) AND (("2022"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D22 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)
load(file = "Science_1_3.Rdata")
load(file = "Science_4_22.Rdata")
save(D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,
     D11,D12,D13,D14,D15,D17,D18,
     D19,D20,D21,D22,file = "Science_all.Rdata")
m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m3 = pmApi2df(D3)
m4 = pmApi2df(D4)
m5 = pmApi2df(D5)
m6 = pmApi2df(D6)
m7 = pmApi2df(D7)
m8 = pmApi2df(D8)
m9 = pmApi2df(D9)
m10 = pmApi2df(D10)
m11 = pmApi2df(D11)
m12 = pmApi2df(D12)
m13 = pmApi2df(D13)
m14 = pmApi2df(D14)
m15 = pmApi2df(D15)
# m16 = pmApi2df(D16)
m17 = pmApi2df(D17)
m18 = pmApi2df(D18)
m19 = pmApi2df(D19)
m20 = pmApi2df(D20)
m21 = pmApi2df(D21)
m22 = pmApi2df(D22)
m = rbind(m1, m2, m3,m4,m5,m6,m7,m8,
          m9, m10, m11,m12,m13,m14,m15,
          m17, m18, m19,m20,m21,m22)
df=m
df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
save(fa,file = "Science_.Rdata")
#load(file="Nature communications.Rdata")
head(sort(table(fa),decreasing = T),15)
# fa
# WALSH, J      HOLDEN, C      KERR, R A   ABELSON, P H    MARSHALL, E    CARTER, L J     SMITH, R J 
# 18482            829            662            614            544            532            431            390 
# NORMAN, C   WALDROP, M M  ROBINSON, A L     DICKSON, D        WADE, N GREENBERG, D S     MAUGH, T H 
# 389            377            307            271            268            262            241 

3.2.1 WALSH, J 科学科普

829篇?重名了?发文时间集中在1962-1989,可能不是重名

找了篇文章看,可能是做科普或者做动物分类的

还有一些社科评论相关的文章

一页3篇Science

寻思WALSH, J 可能是Science期刊的科普作者或者记者

那岂不是发Science就是他的本职工作??

3.3- Nature

1945年创刊,78年了

近13万文章

代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#"Nature"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成八份
query = '("Nature"[Journal]) AND (("1945"[Date - Publication] : "1957"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("1958"[Date - Publication] : "1963"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("1964"[Date - Publication] : "1968"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D3 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("1967"[Date - Publication] : "1971"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D4 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("1972"[Date - Publication] : "1980"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D5 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("1981"[Date - Publication] : "1988"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D6 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("1989"[Date - Publication] : "1989"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D16 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("1990"[Date - Publication] : "1996"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D7 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("1997"[Date - Publication] : "2001"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D8 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("2002"[Date - Publication] : "2005"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D9 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("2006"[Date - Publication] : "2009"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D10 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("2010"[Date - Publication] : "2013"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D11 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("2014"[Date - Publication] : "2016"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D12 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("2017"[Date - Publication] : "2019"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D13 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("2020"[Date - Publication] : "2022"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D14 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature"[Journal]) AND (("2023"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D15 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)



save(D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,
     D11,D12,D13,D14,D15,D16,file = "Nature.Rdata")


m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m3 = pmApi2df(D3)
m4 = pmApi2df(D4)
m5 = pmApi2df(D5)
m6 = pmApi2df(D6)
m7 = pmApi2df(D7)
m8 = pmApi2df(D8)
m9 = pmApi2df(D9)
m10 = pmApi2df(D10)

m11 = pmApi2df(D11)
m12 = pmApi2df(D12)
m13 = pmApi2df(D13)
m14 = pmApi2df(D14)
m15 = pmApi2df(D15)
m16 = pmApi2df(D16)
m = rbind(m1, m2, m3,m4,m5,m6,m7,m8,
          m9, m10, m11,m12,m13,m14,m15,m16)

df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
save(fa,file = "Nature_fa.Rdata")
#load(file="Nature_fa.Rdata")
head(sort(table(fa),decreasing = T),15)
# fa
# SMAGLIK, PAUL     GEWIN, VIRGINIA EISENSTEIN, MICHAEL     POWELL, KENDALL        SAVAGE, NEIL 
# 2735                 229                 100                  79                  78                  62 
# WOOLSTON, CHRIS SCHIERMEIER, QUIRIN      LEDFORD, HEIDI      ABBOTT, ALISON    CYRANOSKI, DAVID        DOLGIN, ELIE 
# 59                  57                  51                  47                  46                  44 
# PERKEL, JEFFREY M        DANCE, AMBER    WITZE, ALEXANDRA 

前15位

出去谨慎,搜第一名SMAGLIK, PAUL

3.3.1 SMAGLIK, PAUL 应该是记者

展示他的2篇报道

1-单细胞测序相关

2-神经科学相关

....估计是记者在追踪报道

发现一位以发Nature为本职工作的

那岂不是...

原来发顶刊的诀窍是... 发不了就加入。

4-Nature子刊

4.1 新子刊

4.1.1- Nature machine intelligence

Nature新的子刊~ 2019年,4年

稍一共60篇文章

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##"Nature machine intelligence"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成八份
query = '("Nature machine intelligence"[Journal]) AND (("2019"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m=m1
df=m
df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
head(sort(table(fa),decreasing = T),15)

结果:

4.1.1.1 LIU, RUOQI

4.1.2- Nature Computational Science

2021年创刊,也是Nature新子刊,2年

37篇文章,目前还没有影响因子

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
####"Nature Computational Science"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成八份
query = '("Nature Computational Science"[Journal]) AND (("2019"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m=m1
df=m
df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
head(sort(table(fa),decreasing = T),15)
# fa
# CHIRIGATI, FERNANDO     RASTOGI, ANANYA                     
# 2                   2                   1 
# AVANTS, BRIAN B    BRYAN, J SHEPARD CHAMBERLAND, MAXIME 
# 1                   1                   1 
# GALA, ROHAN     GAMAZON, ERIC R      GUAN, YUANFANG 
# 1                   1                   1 
# HASEEB, MUHAMMAD    HOFFECKER, IAN T            HOU, HAO 
# 1                   1                   1 
# JIN, CHONG      JING, XIAOYANG   JOSEPH, JERELLE A 
# 1                   1                   1 

结果:

4.1.2.1 CHIRIGATI, FERNANDO

看了一眼pdf文件,并不是一般意义上的科研文章。

4.1.2.2 RASTOGI, ANANYA

第二名也是类似情况

pdf内容

就不继续看了。

5-Nature老牌子刊

5.1- Nature communications

2010年创刊,13年

共计5万多篇文章

代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##"Nature communications"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成八份
query = '("Nature communications"[Journal]) AND (("2010"[Date - Publication] : "2015"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature communications"[Journal]) AND (("2016"[Date - Publication] : "2017"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature communications"[Journal]) AND (("2018"[Date - Publication] : "2018"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D3 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature communications"[Journal]) AND (("2019"[Date - Publication] : "2019"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D4 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature communications"[Journal]) AND (("2020"[Date - Publication] : "2020"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D5 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature communications"[Journal]) AND (("2021"[Date - Publication] : "2021"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D6 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature communications"[Journal]) AND (("2022"[Date - Publication] : "2022"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D7 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nature communications"[Journal]) AND (("2023"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D8 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)
#save(D1,D2,D3,D4,D5,D6,D7,D8,file = "Nature communications.Rdata")
#save(D4,file = "Nature communications_D4.Rdata")
load(file = "Nature communications.Rdata")
load(file = "Nature communications_D4.Rdata")
m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m3 = pmApi2df(D3)
m4 = pmApi2df(D4)
m5 = pmApi2df(D5)
m6 = pmApi2df(D6)
m7 = pmApi2df(D7)
m8 = pmApi2df(D8)
m = rbind(m1, m2, m3,m4,m5,m6,m7,m8)

df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
save(fa,file = "Nature communications.Rdata")
#load(file="Nature communications.Rdata")
head(sort(table(fa),decreasing = T),15)
# fa
# YANG, YANG  LIU, YANG ZHANG, LEI   LIU, WEI WANG, YING ZHANG, WEI  WANG, WEI WANG, YANG ZHANG, TAO    LI, JUN   WANG, QI  ZHANG, YI    LI, JIE    LI, YAN 
# 20         17         15         14         14         14         13         13         13         12         12         12         11         11 
# LIU, YI 
#11 

嗯?好像全是国人诶。

诶嘿嘿,那不挺好~

顺着线索扒一扒,看看这个牛气的国人是什么领域的。

扒~

5.1.1 原来是重名了

以下举例了3位YANG, YANG YANG, YANG 1号

YANG, YANG 2号

YANG, YANG 3号

第二名也存在重名

5.2- Nature methods

创立于2004年,19年

5千多篇~

代码:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##"Nature methods"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录
query = '("Nature methods"[Journal]) AND (("2004"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m=m1
df=m
df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
head(sort(table(fa),decreasing = T),15)

emmm,这数量级大概是记者吧,简单搜索一位

5.2.1 VOGT, NINA

好的就是记者...

5.3- Nature genetics

创刊于1992,31年

一共近9000篇

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##"Nature genetics"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录
query = '("Nature genetics"[Journal]) AND (("1992"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)
#save(D1,file = "Nature_genetics.Rdata")
m1 = pmApi2df(D1)
m=m1
df=m
df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
save(fa,file = "Nature_genetics.Rdata")
#load(file="Nature_genetics.Rdata")
head(sort(table(fa),decreasing = T),15)
# fa
# ALAM, ORNOB          DANOVI, SAFIA 
# 135                      9                      9 
# FLETCHER, MICHAEL           FAIAL, TIAGO                LI, WEI 
# 9                      8                      8 
# VOGAN, KYLE    GUDMUNDSSON, JULIUS    MCCARROLL, STEVEN A 
# 8                      7                      6 
# BARRETT, JEFFREY C       CONRAD, DONALD F GUDBJARTSSON, DANIEL F 
# 5                      5                      5 
# SULEM, PATRICK        TURNBULL, CLARE                  XU, X 
# 5                      5                      5 

结果:

这个数量级正常了

5.3.1 ALAM, ORNOB

emmm,好吧,看不像科研论文

下一位

5.4- Nature biotechnology

创刊于1996年,27年

1万多篇

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##Nature biotechnology 
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成两份
query = '("Nature biotechnology"[Journal]) AND (("1996"[Date - Publication] : "2010"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)


query = '("Nature biotechnology"[Journal]) AND (("2011"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m = rbind(m1, m2)

df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
save(fa,file = "Nature_biotechnology s.Rdata")
#load(file="Nature_biotechnology s.Rdata")
head(sort(table(fa),decreasing = T),15)
# fa
# FRANCISCO, MICHAEL        JACOBS, TOM     HUGGETT, BRADY          DEWITT, N DEFRANCESCO, LAURA 
# 774                 50                 48                 47                 43                 41 
# PERSIDIS, A            DOVE, A    LAWRENCE, STACY   SHERIDAN, CORMAC    FREDERICKSON, R         HODGSON, J 
# 37                 32                 31                 31                 30                 29 
# GARBER, KEN           HOYLE, R       RATNER, MARK 
# 20                 20                 17 

查了第一名是记者。

好,下一位

5.5- Nature medicine

1995年创立,28年

1万多篇文献

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##"Nature medicine"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成两份
query = '("Nature medicine"[Journal]) AND (("1995"[Date - Publication] : "2014"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)


query = '("Nature medicine"[Journal]) AND (("2015"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m = rbind(m1, m2)

df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
save(fa,file = "Nature medicine.Rdata")
load(file="Nature medicine.Rdata")
head(sort(table(fa),decreasing = T),15)
# fa
# STOWER, HANNAH       O'LEARY, KAREN 
#                  195                  164                   12 
#        BIRMINGHAM, K     CARVALHO, THIAGO CHAKRADHAR, SHRADDHA 
#                   11                   10                   10 
#  GOLDSTEIN, JOSEPH L             NOVAK, K  WILLYARD, CASSANDRA 
#                    5                    5                    5 
#            BACH, F H         BALLMAIER, M             BOSCH, X 
#                    4                    4                    4 
#        GRAINGER, D J     KEENER, AMANDA B             READY, T 
#                    4                    4                    4 

第一名,这个数量级已经没有兴趣查了

6-其他追梦刊物

6.1- Bioinformatics 示例~

创刊1998,25年

1万7的文章数

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
llibrary(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成两份
query = '("Bioinformatics (Oxford, England)"[Journal]) AND (("1998"[Date - Publication] : "2014"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Bioinformatics (Oxford, England)"[Journal]) AND (("2015"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m = rbind(m1, m2)

##以下一句有修改
df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
##以下一句有修改,只取了前15head(sort(table(fa),decreasing = T),15) 

看见大佬了~ 核对了一下检索统计结果,没什么问题 看看第一名~

6.1.1FOGG, CHRISTIANA N 记者

依旧不是科研论文

6.1.2 LI, HENG 真大佬,整SAMtools的

哇,真大佬

6.2- BMC bioinformatics

2000年创刊,23年

1万多的文章

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成两份
query = '("BMC bioinformatics"[Journal]) AND (("1998"[Date - Publication] : "2014"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("BMC bioinformatics"[Journal]) AND (("2015"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m = rbind(m1, m2)

df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
head(sort(table(fa),decreasing = T),15)

结果:

6.2.1 WINTERS-HILT, STEPHEN 做算法

是学术论文,那真是大牛哇

6.3- Nucleic acids research

1974年创刊,49年

近5万篇文献

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
##"Nucleic acids research"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成六份
query = '("Nucleic acids research"[Journal]) AND (("1974"[Date - Publication] : "1987"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nucleic acids research"[Journal]) AND (("1988"[Date - Publication] : "1993"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nucleic acids research"[Journal]) AND (("1994"[Date - Publication] : "2004"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D3 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nucleic acids research"[Journal]) AND (("2005"[Date - Publication] : "2012"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D4 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nucleic acids research"[Journal]) AND (("2013"[Date - Publication] : "2018"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D5 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Nucleic acids research"[Journal]) AND (("2019"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D6 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m3 = pmApi2df(D3)
m4 = pmApi2df(D4)
m5 = pmApi2df(D5)
m6 = pmApi2df(D6)
m = rbind(m1, m2, m3,m4,m5,m6)

df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
head(sort(table(fa),decreasing = T),15)

查作者

6.3.1 NAKAMURA, Y 同类型文章

1988年有峰值

是科研文章,但是是同一类型

6.4- Genome biology

2000年创刊,23年了

5千多文献

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#"Genome biology"[Journal]
rm(list = ls())
library(pubmedR)

api_key = NULL

# pubmed一次只能下载小于1万条记录,这里分成两份
query = '("Genome biology"[Journal]) AND (("1998"[Date - Publication] : "2014"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D1 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

query = '("Genome biology"[Journal]) AND (("2015"[Date - Publication] : "2023"[Date - Publication]))'
res <- pmQueryTotalCount(query = query, api_key = api_key)
D2 <- pmApiRequest(query = query, limit = res$total_count, api_key = NULL)

m1 = pmApi2df(D1)
m2 = pmApi2df(D2)
m = rbind(m1, m2)

df=m

df = df[df$DT == "JOURNAL ARTICLE", ]
fa = gsub(";.*$", "", df$AF)
head(sort(table(fa),decreasing = T),15)

查作者

6.4.1 PETSKO, GREGORY A 记者

从标题看,是记者

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2023-08-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信菜鸟团 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
生物信息学权威期刊Bioinformatics发文量最大的是谁
然后又看到了目前位于德国的顾祖光公众号发布的蛮有意思的探索,使用了pubmedR这个包,统计具体的某个杂志的文章的作者发文量情况:
生信技能树
2023/09/04
3110
生物信息学权威期刊Bioinformatics发文量最大的是谁
如何使用 Neo4J 和 Transformer 构建知识图谱
在这篇文章中,我将展示如何使用经过优化的、基于转换器的命名实体识别(NER)以及 spaCy 的关系提取模型,基于职位描述创建一个知识图谱。这里介绍的方法可以应用于其他任何领域,如生物医学、金融、医疗保健等。
深度学习与Python
2022/04/19
2.6K0
如何使用 Neo4J 和 Transformer 构建知识图谱
Python网易云音乐爬虫进阶篇
年前写过一篇爬网易云音乐评论的文章,爬不了多久又回被封,所以爬下来那么点根本做不了什么分析,后面就再改了下,加入了多线程,一次性爬一个歌手最热门50首歌曲的评论,算是进阶版了~
Awesome_Tang
2018/09/11
2.8K0
Python网易云音乐爬虫进阶篇
关于云开发数据库的使用经验和建议
开发者可以使用云开发快速开发小程序、小游戏、公众号网页等,并且原生打通微信开放能力。
腾讯云开发TCB
2021/04/22
8740
关于云开发数据库的使用经验和建议
使用Python在Neo4j中创建图数据库
图数据库的一个最常见的问题是如何将数据存入数据库。在上一篇文章中,我展示了如何使用通过Docker设置的Neo4j浏览器UI以几种不同的方式之一实现这一点。
磐创AI
2021/05/07
6.4K0
使用Python在Neo4j中创建图数据库
SQL Assistant:Streamlit 中的文本到 SQL 应用程序
在本文中,我们将探索Vanna.ai的应用,这是一个Python 库,专门用于训练能够处理自然语言问题并生成 SQL 查询作为响应的模型。此实现将集成到 ✨Streamlit 应用程序中,创建一个 🤖 聊天机器人,方便提出问题并为返回的查询提供解释。
大数据杂货铺
2024/01/31
2.1K0
SQL Assistant:Streamlit 中的文本到 SQL 应用程序
ClickHouse不同引擎大比拼
这个引擎是 ClickHouse 的重头戏,它支持一个日期和一组主键的两层式索引,还可以实时更新数据。同时,索引的粒度可以自定义,外加直接支持采样功能。
大数据真好玩
2022/03/28
1.6K0
ClickHouse不同引擎大比拼
Python爬虫爬取网易云音乐全部评论
beautiful now.png 思路整理 访问网易云音乐单曲播放界面,我们可以看到当我们翻页的时候网址是没有变化的,这时候我们大致可以确定评论是通过post形式加载的; .
Awesome_Tang
2018/09/11
1.5K0
Python爬虫爬取网易云音乐全部评论
SQL系列(三)SQL使用的旁枝末节
这里重点说一下严格模式和非严格模式:Hive在严格模式下查询时,需指定分区(查询分区表时),排序后需增加limit限制,不支持笛卡尔积查询。防止误操作等造成的资源浪费。
HsuHeinrich
2023/02/24
4920
SQL系列(三)SQL使用的旁枝末节
kubernetes init流程概览
kubernetes init流程 引导前检查 生成私钥以及数字证书 生成控制平面的kubeconfig文件 生成控制平面组件的manifest文件 下载镜像,等待控制平面启动 保存MasterConfiguration 设定Master标志 进行基于TLS的安全引导相关的配置 安装DNS和kube-porxy插件 引导前检查 kubeadm init pre-flight check: kubeadm版本要与安装的kubernetes版本的比对检查 kubernetes安装的系统需求检查 其
禹都一只猫olei
2018/10/22
1.3K0
kubernetes init流程概览
mongodb常用的两种group方法,以及对结果排序
版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
张凝可
2019/08/22
3.2K0
2019“嘉韦思杯”上海市网络安全邀请赛WriteUp
尝试提交 gid=1'报错, gid=1or1=1回显正常,直接使用 sqlmap进行测试,存在以下注入方式:
安恒网络空间安全讲武堂
2019/09/29
1.9K0
2019“嘉韦思杯”上海市网络安全邀请赛WriteUp
【在线五子棋对战】七、数据管理模块实现
数据管理模块主要负责对于数据库中数据进行统一的增删改查管理,其他模块要对数据操作都必须通过数据管理模块完成。主要分为下面的两大块进行设计:
利刃大大
2025/07/22
1070
Pandas 2.2 中文官方教程和指南(四)
由于许多潜在的 pandas 用户对 SQL 有一定的了解,本页旨在提供使用 pandas 执行各种 SQL 操作的一些示例。
ApacheCN_飞龙
2024/04/26
7970
Pandas 2.2 中文官方教程和指南(四)
机器学习多场景实战
是验证APP对用户吸引力的重要指标。通常可以利用用户留存率与竞品进行对比,衡量APP对用户的吸引力
@小森
2024/06/06
1620
机器学习多场景实战
LangChain智能体开发实战:从零构建企业级AI助手
作为一名深耕AI领域多年的开发者,我见证了从传统聊天机器人到智能体(Agent)的技术演进。在当前大模型技术快速发展的背景下,LangChain Agent无疑是连接AI能力与实际业务场景的重要桥梁。正如OpenAI CEO Sam Altman所说:"智能体将是下一个重大技术突破,它们不仅能理解语言,更能主动解决复杂问题。"
摘星.
2025/07/14
3651
LangChain智能体开发实战:从零构建企业级AI助手
GraphRAG+neo4j实战
本地搜索方法通过将AI提取的知识图谱中的相关数据与原始文档的文本块相结合来生成答案。此方法适用于需要理解文档中提到的特定实体的问题(例如,洋甘菊的治疗功效是什么?)。
happywei
2025/06/27
3130
数据库和ORMS:使用Tortoise ORM与数据库通信
learn from 《Building Data Science Applications with FastAPI》
Michael阿明
2022/11/27
3.3K0
数据库和ORMS:使用Tortoise ORM与数据库通信
【java微信支付】微信支付之扫码支付相关代码
最近开发网站过程,需要引入支付过程,第三方支付中最火的莫过于支付宝支付和微信支付,下边借助微信支付官网上的文档,写一下接入微信支付之扫码支付的流程
用户5640963
2019/07/26
5.4K0
2天学会Pandas
0.导语1.Series2.DataFrame2.1 DataFrame的简单运用3.pandas选择数据3.1 实战筛选3.2 筛选总结4.Pandas设置值4.1 创建数据4.2 根据位置设置loc和iloc4.3 根据条件设置4.4 按行或列设置4.5 添加Series序列(长度必须对齐)4.6 设定某行某列为特定值4.7 修改一整行数据5.Pandas处理丢失数据5.1 创建含NaN的矩阵5.2 删除掉有NaN的行或列5.3 替换NaN值为0或者其他5.4 是否有缺失数据NaN6.Pandas导入导出6.1 导入数据6.2 导出数据7.Pandas合并操作7.1 Pandas合并concat7.2.Pandas 合并 merge7.2.1 定义资料集并打印出7.2.2 依据key column合并,并打印7.2.3 两列合并7.2.4 Indicator设置合并列名称7.2.5 依据index合并7.2.6 解决overlapping的问题8.Pandas plot出图9.学习来源
公众号guangcity
2019/09/20
1.6K0
2天学会Pandas
相关推荐
生物信息学权威期刊Bioinformatics发文量最大的是谁
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档