暂无搜索历史
指示器是一系列相关图的统称,主要用于突出展示某一变量的实际值与目标值的差异,例如常见的数据delta、仪表盘、子弹图、水滴图等。
表格是数据在行和列中的结构化排列,允许进行方便的排序、过滤和分析。表格的优点在于可以清晰、有组织的呈现信息,便于快速比较和解读信息。
径向柱图基于同心圆网格来绘制条形图,虽然不如普通条形图表达准确,但却有抓人眼球的效果。其衍生的南丁格尔玫瑰图则广为人知。
棒棒糖图实际上是修饰后的条形图。当在处理大量的值,并且当这些值都很高时,棒棒糖图就很有用。
平行坐标图可以显示多变量的数值数据,最适合用来同一时间比较许多变量,并表示它们之间的关系。缺点也很明显,
词云图主要用来可视化文本数据,通常以大小和位置表示关键字的频率,以此来比较不同关键词的重要程度。
雷达图可以用来比较多个定量变量,也可以用于查看数据集中变量的得分高低,是显示性能表现的理想之选。缺点是变量过多容易造成阅读困难。
条形图主要用来比较不同类别间的数据差异,一条轴表示类别,另一条则表示对应的数值度量。
二维密度图可以表示两个数值变量组合的分布,通过颜色渐变(或等高线高低)表示区域内观测值的数量。既可以识别数据集中趋势,也可以分析两个变量之间是否存在某种关系等,
连接散点图(点线图)是折线图的一种,与散点图类似。但添加了按数据点出现顺序的连线,以此来表示两个变量的顺序关系。因此连接散点图既能分析相关性,也可分析趋势性。
seaborn主要利用scatterplot绘制气泡图,可以通过seaborn.scatterplot[1]了解更多用法
相关矩阵图既可以分析每对变量之间的相关性,也可以分析单变量的分布情况。相关性以散点图的形式可视化,对角线用直方图/密度图表示每个变量的分布。
seaborn主要利用heatmap绘制热图,可以通过seaborn.heatmap[1]了解更多用法
散点图可以了解数据之间的各种相关性,如正比、反比、无相关、线性、指数级、 U形等,而且也可以通过数据点的密度(辅助拟合趋势线)来确定相关性的强度。另外,也可以探...
山脊图可以同时显示几个组的数值分布情况,并且可以在同一水平下,直观地对比多个分布的变化。
蜂群图可以不重叠的显示各数据点的分布。相对于散点图,所绘制的点彼此靠近且不会重叠,能有效呈现出点分布的局部密度信息。
小提琴图主要用于显示数据分布及其概率密度。中间的黑色粗条表示四分位数范围,从其延伸的幼细黑线代表 95% 置信区间(以外则为异常点),而白点则为中位数。小提琴图...
箱线图也叫盒须图,主要用来突出显示数据分布的四分位数。同时也可以获取较多的统计信息,例如:四分位数、异常值、分布是否倾斜/对称等。
密度图用于显示数据在连续数值(或时间段)的分布状况,是直方图的变种。由于密度图不受所使用分组数量的影响,所以能更好地界定分布形状。
直方图主要用来显示在连续间隔(或时间段)的数据分布,每个条形表示每个间隔(或时间段)的频率,直方图的总面积等于数据总量。
暂未填写公司和职称
暂未填写个人简介
暂未填写技能专长
暂未填写学校和专业
暂未填写个人网址
暂未填写所在城市