前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >pytorch学习笔记(十一):fine-tune 预训练的模型

pytorch学习笔记(十一):fine-tune 预训练的模型

作者头像
ke1th
发布2018-01-02 11:17:27
2.4K0
发布2018-01-02 11:17:27
举报
文章被收录于专栏:漫漫深度学习路

torchvision 中包含了很多预训练好的模型,这样就使得 fine-tune 非常容易。本文主要介绍如何 fine-tune torchvision 中预训练好的模型。

安装

代码语言:javascript
复制
pip install torchvision

如何 fine-tune

以 resnet18 为例:

代码语言:javascript
复制
from torchvision import models
from torch import nn
from torch import optim

resnet_model = models.resnet18(pretrained=True) 
# pretrained 设置为 True,会自动下载模型 所对应权重,并加载到模型中
# 也可以自己下载 权重,然后 load 到 模型中,源码中有 权重的地址。

# 假设 我们的 分类任务只需要 分 100 类,那么我们应该做的是
# 1. 查看 resnet 的源码
# 2. 看最后一层的 名字是啥 (在 resnet 里是 self.fc = nn.Linear(512 * block.expansion, num_classes))
# 3. 在外面替换掉这个层
resnet_model.fc= nn.Linear(in_features=..., out_features=100)

# 这样就 哦了,修改后的模型除了输出层的参数是 随机初始化的,其他层都是用预训练的参数初始化的。

# 如果只想训练 最后一层的话,应该做的是:
# 1. 将其它层的参数 requires_grad 设置为 False
# 2. 构建一个 optimizer, optimizer 管理的参数只有最后一层的参数
# 3. 然后 backward, step 就可以了

# 这一步可以节省大量的时间,因为多数的参数不需要计算梯度
for para in list(resnet_model.parameters())[:-2]:
    para.requires_grad=False 

optimizer = optim.SGD(params=[resnet_model.fc.weight, resnet_model.fc.bias], lr=1e-3)

...

为什么

这里介绍下 运行resnet_model.fc= nn.Linear(in_features=..., out_features=100)时 框架内发生了什么

这时应该看 nn.Module 源码的 __setattr__ 部分,因为 setattr 时都会调用这个方法:

代码语言:javascript
复制
def __setattr__(self, name, value):
    def remove_from(*dicts):
        for d in dicts:
            if name in d:
                del d[name]

首先映入眼帘就是 remove_from 这个函数,这个函数的目的就是,如果出现了 同名的属性,就将旧的属性移除。 用刚才举的例子就是:

  • 预训练的模型中 有个 名字叫fc 的 Module。
  • 在类定义外,我们 将另一个 Module 重新 赋值给了 fc
  • 类定义内的 fc 对应的 Module 就会从 模型中 删除。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 安装
  • 如何 fine-tune
  • 为什么
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档