前往小程序,Get更优阅读体验!
立即前往
发布
社区首页 >专栏 >单细胞多样本整合之harmony(seurat v5)

单细胞多样本整合之harmony(seurat v5)

作者头像
用户11414625
发布2024-12-20 15:24:36
发布2024-12-20 15:24:36
47400
代码可运行
举报
文章被收录于专栏:生信星球520生信星球520
运行总次数:0
代码可运行

0.背景知识

多样本整合这回事,其实有很多中方法,seurat5可以用一个参数支持5种整合算法。 Anchor-based CCA integration (method=CCAIntegration) Anchor-based RPCA integration (method=RPCAIntegration) Harmony (method=HarmonyIntegration) FastMNN (method= FastMNNIntegration) scVI (method=scVIIntegration)

不要选择困难症,我们一般就是用harmony。单纯harmony一种算法的话,之前V4版本的代码也仍然可以使用,这不是有新用法了再跟着跑一下嘛。

官方文档使用的示例数据和包下载起来一堆坑,让我们搞简单点,用GEO的数据GSE183904的两个样本。

为啥是两个样本呢,因为样本数量多了你电脑带不起来。。。

单细胞数据有很多种格式,csv是其中一种。

代码语言:javascript
代码运行次数:0
复制
dir("GSE183904_RAW/")

## [1] "GSM5573467_sample2.csv.gz" "GSM5573472_sample7.csv.gz"

1.批量读取多个样本的数据

代码语言:javascript
代码运行次数:0
复制
rm(list = ls())
if(!file.exists("f.Rdata")){
  fs = dir("GSE183904_RAW/")
  f = lapply(paste0("GSE183904_RAW/",fs),function(x){
    Matrix::Matrix(as.matrix(read.csv(x,row.names = 1)), sparse = T)
  })
  fs = stringr::str_split_i(fs,"_",1)
  names(f) = fs
  save(f,file = "f.Rdata")
}
load("f.Rdata")
str(f,max.level = 1)

## List of 2
##  $ GSM5573467:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
##  $ GSM5573472:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

3.创建Seurat对象

代码语言:javascript
代码运行次数:0
复制
library(Seurat)
library(tidyverse)
library(patchwork)
obj = CreateSeuratObject(counts = f,min.cells = 3,min.features = 200)
names(obj@assays$RNA@layers)

## [1] "counts.GSM5573467" "counts.GSM5573472"

CreateSeuratObject是可以一次容纳多个表达矩阵的,会存放在不同的layers

4.质控

代码语言:javascript
代码运行次数:0
复制
obj[["percent.mt"]] <- PercentageFeatureSet(obj, pattern = "^MT-")
obj[["percent.rp"]] <- PercentageFeatureSet(obj, pattern = "^RP[SL]")
obj[["percent.hb"]] <- PercentageFeatureSet(obj, pattern = "^HB[^(P)]")

head(obj@meta.data, 3)

##                       orig.ident nCount_RNA nFeature_RNA percent.mt percent.rp
## AAACCTGAGGAGTAGA_9 SeuratProject       4237          691   2.666981   5.947604
## AAACCTGAGGGTGTTG_9 SeuratProject       6156         2448   6.270305  11.306043
## AAACCTGAGGTTCCTA_9 SeuratProject      16410         2905   3.266301   7.160268
##                     percent.hb
## AAACCTGAGGAGTAGA_9 0.000000000
## AAACCTGAGGGTGTTG_9 0.000000000
## AAACCTGAGGTTCCTA_9 0.006093845

咔,发现orig.ident 是”SeuratObject”,而不是样本名,所以给它手动改一下了。

这两种写法都可以得到两个数据分别多少列,即多少个细胞。

代码语言:javascript
代码运行次数:0
复制
c(ncol(f[[1]]),ncol(f[[2]]))

## [1] 2769 2097

sapply(f, ncol)

## GSM5573467 GSM5573472 
##       2769       2097

obj@meta.data$orig.ident = rep(names(f),times = sapply(bj@assays$RNA@layers, ncol))
VlnPlot(obj, 
        features = c("nFeature_RNA",
                     "nCount_RNA", 
                     "percent.mt",
                     "percent.rp",
                     "percent.hb"),
        ncol = 3,pt.size = 0.1, group.by = "orig.ident")
代码语言:javascript
代码运行次数:0
复制
# obj = subset(obj,
#              percent.mt < 5 &
#              nFeature_RNA < 4200 &
#              nCount_RNA < 18000 &
#              percent.rp <30 &
#              percent.hb <1
# )

这个数据已经被过滤过了,就不用再过滤了。

ok接下来是

5.降维聚类分群那一套

代码语言:javascript
代码运行次数:0
复制
obj <- NormalizeData(obj) %>%
  FindVariableFeatures()%>%
  ScaleData(features = rownames(.)) %>%  
  RunPCA(features = VariableFeatures(.))  %>%
  IntegrateLayers(HarmonyIntegration)%>%
  FindNeighbors(reduction = 'harmony', dims = 1:15)%>%
  FindClusters(resolution = 0.5)%>%
  RunUMAP(reduction = "harmony", dims = 1:15)%>%
  RunTSNE(reduction = "harmony", dims = 1:15)

## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 4866
## Number of edges: 171641
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.9137
## Number of communities: 13
## Elapsed time: 0 seconds

UMAPPlot(obj)+TSNEPlot(obj)
代码语言:javascript
代码运行次数:0
复制
obj = JoinLayers(obj)
obj

## An object of class Seurat 
## 20010 features across 4866 samples within 1 assay 
## Active assay: RNA (20010 features, 2000 variable features)
##  3 layers present: data, counts, scale.data
##  4 dimensional reductions calculated: pca, harmony, umap, tsne

6.SingleR注释

代码语言:javascript
代码运行次数:0
复制
library(celldex)
library(SingleR)
ls("package:celldex")

## [1] "BlueprintEncodeData"              "DatabaseImmuneCellExpressionData"
## [3] "HumanPrimaryCellAtlasData"        "ImmGenData"                      
## [5] "MonacoImmuneData"                 "MouseRNAseqData"                 
## [7] "NovershternHematopoieticData"

f = "../supp/single_ref/ref_BlueprintEncode.RData"
if(!file.exists(f)){
  ref <- celldex::BlueprintEncodeData()
  save(ref,file = f)
}
ref <- get(load(f))
library(BiocParallel)
scRNA = obj
test = scRNA@assays$RNA$data
pred.scRNA <- SingleR(test = test, 
                      ref = ref,
                      labels = ref$label.main, 
                      clusters = scRNA@active.ident)
pred.scRNA$pruned.labels

##  [1] "CD8+ T-cells"      "B-cells"           "CD8+ T-cells"     
##  [4] "Epithelial cells"  "Monocytes"         "Epithelial cells" 
##  [7] "B-cells"           "Fibroblasts"       "HSC"              
## [10] "Epithelial cells"  "Endothelial cells" NA                 
## [13] "Epithelial cells"

#查看注释准确性 
plotScoreHeatmap(pred.scRNA, clusters=pred.scRNA@rownames, fontsize.row = 9,show_colnames = T)
代码语言:javascript
代码运行次数:0
复制
new.cluster.ids <- pred.scRNA$pruned.labels
names(new.cluster.ids) <- levels(scRNA)
levels(scRNA)

##  [1] "0"  "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10" "11" "12"

scRNA <- RenameIdents(scRNA,new.cluster.ids)
levels(scRNA)

## [1] "CD8+ T-cells"      "B-cells"           "Epithelial cells" 
## [4] "Monocytes"         "Fibroblasts"       "HSC"              
## [7] "Endothelial cells"

DimPlot(scRNA, reduction = "tsne",label = T,pt.size = 0.5) + NoLegend()
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-05-06,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信星球 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 0.背景知识
  • 1.批量读取多个样本的数据
  • 3.创建Seurat对象
  • 4.质控
  • 5.降维聚类分群那一套
  • 6.SingleR注释
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档