前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >单细胞多样本整合之CCA(Seuratv5)

单细胞多样本整合之CCA(Seuratv5)

作者头像
用户11414625
发布2024-12-20 15:26:15
发布2024-12-20 15:26:15
14900
代码可运行
举报
文章被收录于专栏:生信星球520生信星球520
运行总次数:0
代码可运行

前言

看到一篇单细胞数据挖掘的文章,题为:Establishment of a Prognostic Model of Lung Adenocarcinoma Based on Tumor Heterogeneity

遂打算拿里面的数据跑一跑,这个数据可以在GSE117570的补充文件里直接下载到。

1.批量读取数据

虽然不是标准10X的三个文件,但也可以搞,直接读取为数据框,转换为矩阵,自行创建Seurat对象就可以啦。

代码语言:javascript
代码运行次数:0
运行
复制
rm(list = ls())
library(stringr)
library(Seurat)
library(dplyr)
fs = dir("GSE117570_RAW/");fs

## [1] "GSM3304007_P1_Tumor_processed_data.txt.gz"
## [2] "GSM3304011_P3_Tumor_processed_data.txt.gz"
## [3] "GSM3304013_P4_Tumor_processed_data.txt.gz"

fs2 = str_split(fs,"_",simplify = T)[,2];fs2

## [1] "P1" "P3" "P4"

原本是8个文件来着,这篇文章是只拿了其中3个。

代码语言:javascript
代码运行次数:0
运行
复制
rm(list = ls())
if(!file.exists("f.Rdata")){
  fs = dir("GSE117570_RAW/")
  f = lapply(paste0("GSE117570_RAW/",fs),function(x){
    Matrix::Matrix(as.matrix(read.table(x,check.names = F)), sparse = T)
  })
  names(f) = fs2
  save(f,file = "f.Rdata")
}
load("f.Rdata")
str(f,max.level = 1)

## List of 3
##  $ P1:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
##  $ P3:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
##  $ P4:Formal class 'dgCMatrix' [package "Matrix"] with 6 slots

这个数据诡异,第一个样本和第三个样本里面有3个相同的barcode,需要处理掉。所以加上下面一段,正常数据里不加哦

代码语言:javascript
代码运行次数:0
运行
复制
length(intersect(colnames(f$P1),colnames(f$P4)))

## [1] 3

f$P4 = f$P4[,!(colnames(f$P4) %in% colnames(f$P1))]

3.创建Seurat对象

代码语言:javascript
代码运行次数:0
运行
复制
library(Seurat)
library(tidyverse)
library(patchwork)
obj = CreateSeuratObject(counts = f,min.cells = 3,min.features = 200)
names(obj@assays$RNA@layers)

## [1] "counts.P1" "counts.P3" "counts.P4"

CreateSeuratObject是可以一次容纳多个表达矩阵的,会存放在不同的layers

4.质控

代码语言:javascript
代码运行次数:0
运行
复制
obj[["percent.mt"]] <- PercentageFeatureSet(obj, pattern = "^MT-")
obj[["percent.rp"]] <- PercentageFeatureSet(obj, pattern = "^RP[SL]")
obj[["percent.hb"]] <- PercentageFeatureSet(obj, pattern = "^HB[^(P)]")

head(obj@meta.data, 3)

##                       orig.ident nCount_RNA nFeature_RNA percent.mt percent.rp
## AAACCTGGTACAGACG-1 SeuratProject       4338         1224   2.512679   18.71830
## AAACGGGGTAGCGCTC-1 SeuratProject      11724         2456   2.021494   28.59092
## AAACGGGGTCCTCTTG-1 SeuratProject       3353          726   2.117507   55.26394
##                    percent.hb
## AAACCTGGTACAGACG-1          0
## AAACGGGGTAGCGCTC-1          0
## AAACGGGGTCCTCTTG-1          0

咔,发现orig.ident 是”SeuratObject”,而不是样本名,所以给它手动改一下了。

这两种写法都可以得到两个数据分别多少列,即多少个细胞。

代码语言:javascript
代码运行次数:0
运行
复制
c(ncol(f[[1]]),ncol(f[[2]]))

## [1] 1832  328

sapply(f, ncol)

##   P1   P3   P4 
## 1832  328 1420

obj@meta.data$orig.ident = rep(names(f),times = sapply(obj@assays$RNA@layers, ncol))
VlnPlot(obj, 
        features = c("nFeature_RNA",
                     "nCount_RNA", 
                     "percent.mt",
                     "percent.rp",
                     "percent.hb"),
        ncol = 3,pt.size = 0.1, group.by = "orig.ident")
代码语言:javascript
代码运行次数:0
运行
复制
obj = subset(obj,
             percent.mt < 20 &
             #nFeature_RNA < 4200 &
             #nCount_RNA < 18000 &
             percent.rp <50 #&
             #percent.hb <1
)

ok接下来是

5.降维聚类分群那一套

代码语言:javascript
代码运行次数:0
运行
复制
obj <- NormalizeData(obj) %>%
  FindVariableFeatures()%>%
  ScaleData(features = rownames(.)) %>%  
  RunPCA(features = VariableFeatures(.))  %>%
  IntegrateLayers(CCAIntegration)%>%
  FindNeighbors(reduction = 'integrated.dr', dims = 1:15)%>%
  FindClusters(resolution = 0.5)%>%
  RunUMAP(reduction = "integrated.dr", dims = 1:15)%>%
  RunTSNE(reduction = "integrated.dr", dims = 1:15)

## Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
## 
## Number of nodes: 3319
## Number of edges: 119327
## 
## Running Louvain algorithm...
## Maximum modularity in 10 random starts: 0.8788
## Number of communities: 9
## Elapsed time: 0 seconds

UMAPPlot(obj)+TSNEPlot(obj)
代码语言:javascript
代码运行次数:0
运行
复制
obj = JoinLayers(obj)
obj

## An object of class Seurat 
## 8013 features across 3319 samples within 1 assay 
## Active assay: RNA (8013 features, 2000 variable features)
##  3 layers present: data, counts, scale.data
##  4 dimensional reductions calculated: pca, integrated.dr, umap, tsne

6.SingleR注释

代码语言:javascript
代码运行次数:0
运行
复制
library(celldex)
library(SingleR)
ls("package:celldex")

## [1] "BlueprintEncodeData"              "DatabaseImmuneCellExpressionData"
## [3] "HumanPrimaryCellAtlasData"        "ImmGenData"                      
## [5] "MonacoImmuneData"                 "MouseRNAseqData"                 
## [7] "NovershternHematopoieticData"

f = "../supp/single_ref/ref_BlueprintEncode.RData"
if(!file.exists(f)){
  ref <- celldex::BlueprintEncodeData()
  save(ref,file = f)
}
ref <- get(load(f))
library(BiocParallel)
scRNA = obj
test = scRNA@assays$RNA$data
pred.scRNA <- SingleR(test = test, 
                      ref = ref,
                      labels = ref$label.main, 
                      clusters = scRNA@active.ident)
pred.scRNA$pruned.labels

## [1] "Monocytes"        "Epithelial cells" "CD8+ T-cells"     "Epithelial cells"
## [5] "Macrophages"      "Macrophages"      "Mesangial cells"  "B-cells"         
## [9] "B-cells"

#查看注释准确性 
plotScoreHeatmap(pred.scRNA, clusters=pred.scRNA@rownames, fontsize.row = 9,show_colnames = T)
代码语言:javascript
代码运行次数:0
运行
复制
new.cluster.ids <- pred.scRNA$pruned.labels
names(new.cluster.ids) <- levels(scRNA)
levels(scRNA)

## [1] "0" "1" "2" "3" "4" "5" "6" "7" "8"

scRNA <- RenameIdents(scRNA,new.cluster.ids)
levels(scRNA)

## [1] "Monocytes"        "Epithelial cells" "CD8+ T-cells"     "Macrophages"     
## [5] "Mesangial cells"  "B-cells"

DimPlot(scRNA, reduction = "tsne",label = T,pt.size = 0.5) + NoLegend()

搞掂~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2024-05-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信星球 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 前言
  • 1.批量读取数据
  • 3.创建Seurat对象
  • 4.质控
  • 5.降维聚类分群那一套
  • 6.SingleR注释
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档