前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >为什么要选择单细胞核RNA测序?

为什么要选择单细胞核RNA测序?

作者头像
生信交流平台
发布于 2020-09-14 09:31:41
发布于 2020-09-14 09:31:41
2.5K0
举报

为什么要选择单细胞核RNA测序而非单细胞RNA测序

——单细胞核RNA测序的优势!

单细胞RNA测序技术的高通量和敏感性使其非常适合于全面绘制细胞状态的变化。但是在肾脏和其他固体组织中(尤其是对于高上皮含量的组织,以及以细胞外基质为特征的固体组织),单细胞RNA测序研究的一个大的挑战是如何获得高质量的单细胞悬浮液,高质量的单细胞悬浮液应该包含罕见或难以解离的细胞类型,细胞的mRNA不降解,基因的表达不受解离反应的影响。但是现实实验得到的结果确不是这样的,相信做过单细胞测序的科研人员都会遇到以下这样的问题:

  1. 单细胞RNA测序不能准确地捕获组织中所有细胞类型(比如肾脏,脑),因为单细胞解离本身可能损害敏感细胞。
  2. 目前用于单细胞解离的酶和机械方法会引入了因裂解压力诱导的转录产物。
  3. 活性蛋白酶倾向于选择易解离的细胞类型。不易解离的细胞可能会被丢失。
  4. 目前的方法与冷冻样本材料不兼容(冷冻样本不能用于单细胞测序),但是有的时候,临床所取的样本需要等待病理诊断后才能去做单细胞测序(比如肾脏活检样本),因此为了保证样本的RNA稳定性,需要进行冻存。

基于以上4点局限性,2019年,来自华盛顿大学医学院的Benjamin D. Humphreys团队通过比较分析了肾脏组织的单细胞RNA测序(scRNA-seq)和肾脏组织的单细胞核RNA测序(snRNA-seq),在肾脏细胞类群鉴定中的区别,该研究成果发表在肾脏病学顶尖国际期刊J Am Soc Nephrol上(Advantages of Single-Nucleus over Single-Cell RNA Sequencing of Adult Kidney: Rare Cell Types and Novel Cell States Revealed in Fibrosis)。

研究人员将使用DropSeq平台的 (scRNA-seq与使用snuco -DropSeq、DroNc-seq和10X genomics三个平台的snRNA-seq结果进行了比较。并验证了snRNA-seq对小鼠单侧输尿管梗阻(UUO)术后14天肾脏纤维化的作用。

scRNA-seq测序结果显示,肾脏组织中共获得了10个细胞类群,但肾小球细胞类型缺失,此外,其中一个细胞类群主要由人为解离诱导的应激反应基因组成。相比之下, snRNA-seq捕获了多种在scRNA-seq数据集中不存在的肾脏细胞类型,包括肾小球足细胞、系膜细胞和内皮细胞。同时也未检测到应激反应基因。与已发表的scRNA-seq数据集(分别为2.4%和0.12%)相比, snRNA-seq方法产生了20倍以上的足细胞。令人意外的是,scRNA-seq平台和snRNA-seq平台的基因检测灵敏度相当。为了验证这一结论,对冷冻的第14天UUO肾脏的分析显示了罕见的肾小球旁细胞、新激活的近端小管和成纤维细胞状态,以及以前未识别的小管间质信号通路。

图:snRNA-seq相对于scRNA-seq技术具有较低的解离偏差。(A) tSNE显示了13个细胞类群。(B)不同类群的标记基因表达。(C) tSNE显示每个平台的数据对所有集群的贡献。(D)每个平台贡献的细胞百分比显示,与snRNA-seq相比,scRNA-seq技术对足细胞、内皮细胞和夹层细胞的检出率非常低 (E) snRNA-seq(2.4%)检测出的足细胞是scRNA-seq(0.12%)的20倍。

综上所述,与scRNAseq相比,snRNA-seq提供了更少的细胞解离偏倚和等效的基因检测。尽管snRNA-seq在不同基因中所占比例(7%)低于scRNA-seq,但其中许多是线粒体或人为应激反应基因,细胞鉴定没有受到损害。

2020年4月6日,来自Broad Institute of MIT and Harvard的Joshua Z. Levin团队在Nature Biotechnology上发表了文章Systematic comparison of single-cell and single-nucleus RNA-sequencing methods

系统分析7种单细胞(核)RNA测序技术(图1),包括低通量的Smart-seq2,CEL-Seq2和五种高通量方法 (三种基于微液滴技术,Drop-seq,inDrops, 10x-Chromium,一种基于微孔阵列的 Seq-Well,和基于组合标记的sci-RNA-seq)。其中,只有Smart-seq2是测整个RNA分子全长,其它六种方法都是测RNA分子的3片段端。对于这六种方法,UMI (unified molecular identifier)被用于消除PCR扩增而引起的偏差。

图1:研究概括

为了比较不同scRNA-seq系统,研究人员选择了常用的组织样本(图一),包括人和小鼠的细胞系,人外周血细胞,以及大鼠大脑皮层细胞(用于单细胞核RNA测序)。对每种组织样本,研究人员根据七种scRNA-seq方法同时并行处理。研究人员还开发了数据分析系统scumi(https://bitbucket.org/jerry00/scumi-dev/src/master/)可以分析来自于不同scRNA-seq系统的数据。对于其它不同于以上七种scRNA-seq技术的数据,scumi也可以分析,仅仅改动配置文件即可。

研究发现低通量的Smart-seq2和CEL-Seq2具有更高的敏感性,可以检测到更多的RNA分子。Smart-seq2可以测RNA分子全长,但是比CEL-Seq2更贵。然而,CEL-Seq2数据有可能包含污染(对于一个细胞,一部分来自于其它细胞的RNA分子可能被错误地标记为来自这个细胞)。对于高通量方法,10x Chromium (v3)具有最高的灵敏度。相对于10x Chromium (v2)数据,v3数据有更多的线粒体基因RNA。在细胞分类方面,10x Chromium表现最好(图二)。10x Chromium 数据具有相对较多的反义序列(antisense reads)。Drop-seq和inDrops具有较低的额灵敏度。然而对于细胞分类,通常并不需要太多RNA分子,所以inDrops和Drop-seq也可以检测到所有的细胞类型。需要注意的是Drop-seq和Seq-Well用的是同一种微球(beads),每个微球上所带的序列(用于标记来自于一个细胞的所有RNA分子)是完全随机的。而且厂家在制备微球时,一些微球上的序列在合成过程中产生了错误,比如只合成了十一位,而真正需要的是合成十二位的序列。对于Drop-seq,inDrops和Seq-Well,有相当大一部分数据没有正确的结构。比如,在正常情况下,在UMI序列后面是poly-T序列,但是一部分测序数据没有这样的结构。通常,这些没有正常结构的数据质量差,在分析中被丢弃了,导致测序数据的浪费。CEL-Seq2和inDrops是基于线性扩增,因而技术偏差较小。基于组合标记(combinatorial indexing)的sci-RNA-seq具有更好的扩展性(stability),可以在一个实验中制备上百万个细胞。然而,sci-RNA-seq可能还需要更近一步优化,因为在它在一些组织样本上表现不好,比如外周血。而且,这种方法可能容易受污染,比如在单细胞核测序中出现的不明确的细胞类型。

图二:用来自于不同scRNA-seq方法的数据在检测人外周血细胞类型的效果 (AUC《=1,越大越好)。

这项研究中所有的原始数据都可以从GEO上下载 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132044处理后的数据可以在single cell portal下载和在线分析 (访问号SCP424,SCP425,和SCP426)(例如,https://singlecell.broadinstitute.org/single_cell/study/SCP424)。这项研究为今后人们选择scRNA-seq方法提供了指导。同时,这项研究为scRNA-seq数据分析中的许多挑战问题提供了解决思路和方案,比如怎样从测序数据中选择真正的细胞而非空液滴,系统处理来自于不同scRNA-seq方法的数据,怎样选择各种后期处理参数,比如聚类分析参数等等。由于这项研究中用到的细胞都是实验室容易获得的,在今后,当研究者需要评估一种新的scRNA-seq方法或改进scRNA-seq方法时,她们可以直接比较他们所得新数据和这项研究中所得数据,而不需要重复已有实验。最后,对于计算机科学家或计算生物学家,这些数据可以用于设计和改进现有scRNA-seq数据处理方法。

这项研究由22位作者共同完成。作者包括来自于Broad Institute Aviv Regev实验室 的博士后研究员Jiarui Ding(丁家锐),研究科学家Xian AdiconisSean Simmons。通讯作者是来自于Broad Institute of MIT and Harvard 的Joshua Levin

需要注意的是,一篇相关的文章,由来自于巴塞罗那 CNAG的科学家Holger Heyn任通讯作者的文章也发表在同一期的Nature Biotechnology上,题目为Benchmarking single-cell RNA-sequencing protocols for cell atlas projects。在Broad Institute的 研究中,所有的scRNA-seq数据都在同一个研究所产生,因而可以更好的控制实验中的各种变量,比如实验开始时间,测序仪等。而CNAG的这项研究采取了一种互补的方法:首先创建细胞混合物(细胞来自于人,大鼠,还有1%的细胞来自于狗),然后把这些细胞混合物分发给世界上不同实验室。因而每一种scRNA-seq实验都是由在这种方法方面具有丰富经验的实验室专家完成,这样做的目的是减少实验人员对不同方法的熟悉程度对结果的影响。结果表明,低通量方法Quartz-seq2,Smart-seq2,和CEL-Seq2表现出色,高通量方法中,10x Chromium表现最好。

此外,我们也整理了近年来针对于脑组织的单细胞测序的文章,发现针对于脑组织的单细胞测序,通常选择的是snRNA-seq而非scRNA-seq,例如:

由此可见,snRNA-seq相比于scRNA-seq在高上皮含量的组织,以及以细胞外基质为特征的固体组织的单细胞RNA测序方面,可以有效地将组织还原为单细胞核分离物,并获得高度精确的细胞类型表达谱。

参考文献:

https://doi.org/10.1038/s41587-020-0465-8

https://doi.org/10.1038/s41587-020-0469-4

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2020-09-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 生信交流平台 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
单细胞入门【1】:单细胞测序方法该如何选择?
单细胞转录组测序(scRNA-seq)已成为鉴定和表征细胞类型、状态、谱系和网络的核心工具。Get单细胞技术也成为科研人的必修课。
尐尐呅
2022/03/31
8480
单细胞入门【1】:单细胞测序方法该如何选择?
回顾:单细胞入门-读一篇scRNA-seq综述
本来想看这篇文章 A general and flexible method for signal extraction from single-cell RNA-seq data. 一种通用、灵活的单细胞转录组数据降维方法,ZINB-WaVE。它使用零膨胀负二项式模型,能够解释dropout、超表达和数据的自然属性,在稳定性和精确性上优于PCA和ZIFA。 对应的R包是 zinbwave
生信技能树jimmy
2020/03/30
3.4K0
跟着小鱼头学单细胞测序-如何选择适合的scRNA测序方法
自从2009 年首篇关于scRNA-seq的文章发表以来,这项技术正在被广泛的采用。随着测序平台商业化的迅速发展和相关生物信息学方法的不断成熟,带来了很多生物医学领域新的发现。上期我们简单的介绍了scRNA-seq的背景和数据的复杂性,这一期我们将和大家一起深入了解一些技术细节。只有充分了解了数据复杂性的缘由,我们才能够更好的理解分析流程并且灵活的运用分析方法。
作图丫
2022/03/29
4980
跟着小鱼头学单细胞测序-如何选择适合的scRNA测序方法
单细胞专题 | 1.单细胞测序(10×genomics技术)的原理
单细胞 RNA 测序(Single cell RNA sequencing,scRNA-seq)是一种在单细胞水平上利用 RNA 测序对特细胞群体进行基因表达谱定量的高通量实验技术。待测组织经过单细胞分离、RNA 提取、逆转录、文库构建和测序,便可利用数据分析获得多个细胞的基因表达谱。
DoubleHelix
2022/06/13
36.5K0
单细胞专题 | 1.单细胞测序(10×genomics技术)的原理
单细胞系列教程:什么是单细胞(一)
从本文开始,将带领还未分析过单细胞(scRNA-seq)数据的读者,从如何构建环境,什么是单细胞,单细胞的完整分析流程各方面开展学习,由于内容较多,将会分章节展开,后续会整理成完整PDF教程,请持续关注。
数据科学工厂
2023/01/25
6200
成年小鼠肾脏snRNA-seq和scRNA-seq之比较
背景:肾脏和其他固体组织的单细胞基因组研究面临的一个挑战是获得高质量的单细胞悬液,该悬液含有稀有或难以分离的细胞类型,并且既没有RNA降解,也没有人为的转录应激反应。
生信技能树jimmy
2021/07/01
1.7K0
成年小鼠肾脏snRNA-seq和scRNA-seq之比较
单细胞RNA-seq的前世今生
好的书籍是人类进步的阶梯,但有些人却找不到优秀的阶梯,为此我们开设了书籍翻译这个栏目,作为你学习之路的指路明灯;分享国内外优秀书籍,弘扬分享精神,做一个知识的传播者。
生信技能树jimmy
2020/03/27
1.4K0
干货 | 一文了解单细胞核RNA测序
高通量单细胞RNA测序现已广泛地应用到了各个领域当中,包括了解不同组织类型、疾病状态和不同时期样本中包含的多种细胞亚群以及它们的转录状态等。
生信交流平台
2022/09/21
1.7K0
干货 | 一文了解单细胞核RNA测序
单细胞测序(scRNA-seq)通关||数据处理必知必会
其实单细胞测序已有十年的历史了,十年来,通量不断提升,成本不断降低,已经到了“旧时王谢堂前燕,飞入寻常百姓家”的历史阶段。不信请看《Nature Methods》2013年度技术;《Nature》2017年7月刊的封面推荐 ;《Science》2018十大科学突破榜首。2019年就国内的情形的来看,大大小小的测序公司开始布局单细胞测序市场,高通量价格战不日将拉开序幕。单细胞测序技术将伴随着高通量技术给临床以及学术界带来新的革命。
百味科研芝士
2019/05/27
3K0
单细胞RNA-seq的设计和方法(一)
Bulk vs scRNA-seq.png Bulk RNA-seq : 它测定的是一个大的细胞群体中的每一个基因的平均表达水平。对比较转录组学、找疾病标志物、同质系统等研究非常有帮助。
生信技能树jimmy
2020/05/17
1.1K0
单细胞测序原理
单细胞测序主要包括以下四个步骤。其中非常关键的一点就是如何进行单细胞的捕获/分选,这是决定单细胞检测成本和通量的关键步骤。
生信喵实验柴
2022/10/25
1.6K0
单细胞测序原理
🤩 scRNA-seq | 吐血整理的单细胞入门教程(从原理到代码实操)(二)
1写在前面 上期我们分享了单细胞测序(scRNA-seq)的基本概念,样品的制备以及细胞的捕获。😁 本期我们继续介绍一下转录本定量分析、实验设计、批次效应和混杂因素。🤒 在开始前我们还是先思考几个问题,如下:👇 Q1: 不同protocol有什么区别,优缺点是什么? Q2: 在进行scRNA-seq的实验设计时,要考虑哪些问题? Q3: 与bulk RNA-seq的数据相比,scRNA-seq数据有什么不同? 2定量方法 目前我们常见的转录本定量方法有两种,full-length和tag。🧐 2.1 ful
生信漫卷
2022/10/31
2.9K0
🤩 scRNA-seq | 吐血整理的单细胞入门教程(从原理到代码实操)(二)
文献分享 —— 单细胞和单核RNA测序中细胞类型分布的比较
单细胞核糖核酸(RNA)测序(scRNA-seq)是一种用于估计新鲜组织中单个细胞的细胞组成和转录谱的有效技术。单核RNA测序(snRNA-seq)对于在冷冻或难以分离的组织中进行这种类型的分析是必要的,这些组织不能受到scRNA-seq的影响。组织状态的这种差异导致了每个平台中细胞类型分布的变化。为了确定这些方法的特点及其差异,对结肠和肝组织并行进行scRNA-seq和snRNA-seq。
生信菜鸟团
2023/01/05
1.5K0
文献分享 —— 单细胞和单核RNA测序中细胞类型分布的比较
现在单细胞还想“水”CNS恐怕得多组学了
两年前大家仍的都是一些图谱类的研究,不同的物种不同的器官组织测个十万左右的单细胞就是CNS文章啦,因为都是开创性的研究啊。微信群的大伙都是酸这些CNS说,只有有经费就可以“水”几篇。
生信技能树
2020/10/26
9590
现在单细胞还想“水”CNS恐怕得多组学了
热点综述 | 高维单细胞RNA测序数据分析工具
scRNA-seq数据集通常包含由于不完全RNA捕获、PCR扩增偏差和/或特定于患者或样本的批次效应而产生的技术噪声,如何降低技术噪声对数据分析的影响?
尐尐呅
2022/04/01
8600
热点综述 | 高维单细胞RNA测序数据分析工具
单细胞核测序在人类肾脏上的应用
当你的才华还撑不起你的野心时,请潜下心来,脚踏实地,跟着我们慢慢进步。不知不觉在单细胞转录组领域做知识分析也快两年了,通过文献速递这个栏目很幸运聚集了一些小伙伴携手共进,一起成长。
生信技能树jimmy
2020/03/30
7170
Nucleic Acids Res. | scIGANs: 使用生成对抗网络进行scRNA-seq数据插补
今天给大家介绍德克萨斯大学休斯顿健康与科学中心的徐云刚教授在Nucleic Acids Research上发表的文章 “scIGANs: single-cell RNA-seq imputation using generative adversarial networks”。单细胞测序 (scRNA-seq)可以高通量的表示单个细胞表达谱,但是却会受到很多噪声的影响,“dropout”事件就是其中之一。“dropout”指的是,单细胞测序数据中一些基因的表达值会因为技术等原因被错误的检测为0,而不是真实的表达为0。本文提出了一种基于生成对抗网络 (GAN) 的插补值方法 (scIGANs),来优化基因的表达,该网络使用网络生成细胞而不是使用原始矩阵中观察到的细胞,以此来平衡主要细胞群和稀有细胞群之间的性能。此外,文章利用模拟的以及真实的数据集进行了许多的分析实验,证明了scIGANs对插补值很有效,并适用于各种规模的数据集。
智能生信
2021/02/04
1.6K0
单细胞RNA测序综述汇总—肿瘤研究的新工具
各种形式的肿瘤内异质性和复杂性会影响抗肿瘤治疗的疗效,导致治疗耐药性和转移。而近年来兴起的单细胞测序技术,结合数据整合方法的创新,使得精细理解肿瘤及肿瘤微环境中细胞间的相互作用,表征疾病进展过程中肿瘤内部结构成为可能,本文着重介绍单细胞RNAseq测序技术原理、肿瘤研究中应用、多组学数据整合分析、单细胞RNA测序未来发展等内容。
生信技能树jimmy
2020/03/27
1.9K0
单细胞系列教程:计数矩阵是如何生成的?(二)
根据所使用的文库制备方法,RNA 序列(也称为读数或标签)将来自转录本(10X Genomics、CEL-seq2、Drop-seq)的 3' 末端(或 5' 末端) , inDrops) 或来自全长转录本 (Smart-seq)。
数据科学工厂
2023/01/25
8520
The next generation of single cell RNA-seq(GEM-X)
追风少年i
2024/05/18
4160
The next generation of single cell RNA-seq(GEM-X)
推荐阅读
相关推荐
单细胞入门【1】:单细胞测序方法该如何选择?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档