Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >机会的度量:概率和分布

机会的度量:概率和分布

作者头像
用户3003813
发布于 2018-09-06 06:07:57
发布于 2018-09-06 06:07:57
7910
举报
文章被收录于专栏:个人分享个人分享

在概率论中所说的事件(event)相当于集合论中的集合(set)。

互补事件的概率

  如果一个不出现,则另一个肯定出现的两个事件成为互补事件(complementary events,或者互余事件或对立事件).按照集合的记号,如果一个事件记为A,那么另一个记为的补集。P(A) + P(A) = 1 ,P(A) = 1 − P(A)。(初中学的吧)

比如西方赌博时常常爱用优势或赔率。如果你赢的概率为0.6,那么就说成是你有6对4的优势会赢,或者4对6的优势会输。

概率的加法

  如果两个事件不可能同时发生,那么至少其中之一发生的概率为这两个事件的概率和。比如"抛一次骰子得到5或者5点"的概率是"得到5点"的概率与"得到6点"的概率之和,即1/6 + 1/6 = 1/3。但是如果两个事件可能同时发生时这样做就不对了。

  假设抛骰子时,一个事件A为"得到偶数点"(有可能是2,4,6点),另一个事件B为"得到大于或等于3点"(有4种可能:3,4,5,6点),这样事件A的概率显然等于3/6 = 1/2,即P(A) = 1/2,而事件B的概率为P(B)=2/3.但是,"得到大于或等于3点或者偶数点"的事件的概率就不是P(A) + P(B) = 1/2 + 2/3 = 7/6了,概率怎么能够大于1呢?其实这多出来的就是A与B的共同部分的概率。

概率的乘法

  如果有一个固定电话和一个手机,假定固定电话出毛病的概率为0.01,而手机出问题的概率为0.05,那么两个同时出毛病的概率是多少呢? 上过初中的都能立马算出是0.01乘以0.05,但这种法则,仅仅在两个事件独立(independent)时才成立。如果事件不独立则需要引进条件概率(conditional probability)。

  比如三个人抽签,而只有一个人能够抽中,因此每个人抽中的机会是1/3。假定用A1、A2、A3分别代表着三种人抽中的事件,那么,P(A1)=P(A2)=P(A3)=1/3,但是由于一个人抽中,其他人不可能抽中,所以,这三个事件不独立。所以一般地在一个事件B已经发生的情况下,事件A发生的条件概率定位就为:

变量的分布

  随机变量取一切可能值或范围的概率或概率的规律成为概率分布(probability distribution,简称分布).一个概率分布是和某总体(population)也称为样本空间(sampling space)相联系的。

  在确定了抽样方法后,这个有限总体就可能与概率有关的总体有某种联系了,并且可能对诸如总体比例等进行推断。这里的总体或样本空间为一个抽象的空间,它是由某种试验的所有可能结果点组成的,这些结果的获得都服从某种概率规律。因此,一个总体(样本空间)是由一个取值范围及相连的概率所组成的。

离散随机变量的分布

  离散随机变量只取离散的值,比如骰子的点数、次品的个数、得病的人数等等。每一种取值都有某种概率,各种取值点的概率总和应该是1.当然离散变量不仅限于取非负整数值。一般来说,某离散随机变量的每一个可能取值x都相当于取该值的概率P(xi).

二项分布

  比如,每个进入某商场的顾客都有购买或不购买商品的两种可能、每个被调查的人士会支持或不支持某种观点、每一个产妇有生出或不生出男婴或女婴两种可能等等。根据这种简单试验的分布,可以得到基于这个试验的更加复杂事件的概率。

这里

为二项式系数。 这里P(x)为n次试验中成功k次的概率,p为每次试验成功的概率。不过现在很多统计学工具要统计二项分布的都已经直接实现了~

多项分布为二项分布的推广,就好比调查顾客对5个品牌的饮料的选择中,每种品牌都会以一定的概率中选,假定这些概率为p1,p2,p3,p4,p5。每次试验的结果只可能有一个,因此这些概率的和为1,即p1+p2+p3+p4+p5 = 1,在二项分布中,人们关心的是在n次实验中成功k次的概率(有了成功k次的概率,就有了失败n-k次的概率)。但是在多项分布问题中,所关心的就是在n次试验中,选择5个品牌的人数分别为m1,m2,m3,m4,m5的概率,自然,m1+m2+m3+m4+m5=n。

超几何分布

  超几何分布和有限总体的不放回抽样的实践有密切关系。比如有一批500个产品,而其中有5个次品,质量检查人员随即抽取20个产品进行检查。如果抽到的20个产品中含有2个或更多不合格产品,则整个500个产品都将会退会。那么该批产品退回的概率是多少呢? 这里就满足了超几何分布。 这是一种不放回的抽样,如果放回的话那么这个物品还可能会被抽上,那么每次抽样时得到次品的概率是一样的,等于次品的比例,这就不是超几何分布而是二项分布了。这里的产品总数为n,其中不合格产品数为k,不放回抽样的数目为N,而样本中有M个不合格的产品的概率就为:

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2016-01-30 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
常见概率分布
在一次实验中,事件A出现的概率为 ,不出现的概率为 ,若用 记事件A出现的次数,则 仅取值0或1,相应的概率分布为
用户3577892
2020/06/10
7620
对真实的世界建模-概率论(分布&计算)
前段时间觉得概率论不可理喻,再拿起的时候已经少了些许晦涩之感。(我们的自然语言不明确,概率论是离真实建模最近的学科,所以觉得难学,是因为我们逐渐走向精确)
云深无际
2024/10/08
2070
对真实的世界建模-概率论(分布&计算)
通过实例理解如何选择正确的概率分布
概率分布是描述获得事件可能值的数学函数。概率分布可以是离散的,也可以是连续的。离散分布是指数据只能取某些值,而连续分布是指数据可以取特定范围内的任何值(可能是无限的)。
deephub
2020/09/28
1.3K0
通过实例理解如何选择正确的概率分布
数据分析与数据挖掘 - 05统计概率
在统计学中为了观察数据的离散程度,我们需要用到标准差,方差等计算。我们现在拥有以下两组数据,代表着两组同学们的成绩,现在我们要研究哪一组同学的成绩更稳定一些。方差是中学就学过的知识,可能有的同学忘记了 ,一起来回顾下。 A组 = [50,60,40,30,70,50] B组 = [40,30,40,40,100] 为了便于理解,我们可以先使用平均数来看,它们的平均数都是50,无法比较出他们的离散程度的差异。针对这样的情况,我们可以先把分数减去平均分进行平方运算后,再取平均值。
马一特
2020/09/22
7600
数据科学基础(二) 随机变量及其分布
📚 文档目录 随机事件及其概率 随机变量及其分布 期望和方差 大数定律与中心极限定理 数理统计的基本概念 参数估计 假设检验 多维 回归分析和方差分析 降维 2.1 随机变量 将样本空间 \Omega 中的每个元素 e 与实数对应起来. 定义:设随机试验的样本空间为 S = \{e\}.\space X = X(e) 是定义在样本空间的实值单值函数. 称 X = X(e) 为随机变量. 2.3 离散型随机变量及其分布律 离散型随机变量定义: 有限个 无限可列个 满足条件: p_k\geq0,k=1,2…
Rikka
2022/01/19
7760
数据科学基础(二) 随机变量及其分布
概率论05 离散分布
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
Vamei
2018/09/25
6550
概率论05 离散分布
python实现10种概率分布(附代码)
在概率论和统计学中,均匀分布也被称为矩形分布。这种分布可以通过两个参数a和b来定义,它们分别是数轴上的最小值和最大值,因此通常表示为U(a, b)。
皮大大
2024/08/07
8430
算法入门(三) -- 概率论基础
概率知识是算法学习中较为重要的一环,下面我们就来回顾一下算法中需要用到的概率基础知识,以及他们的公式和分布图像。
万事可爱^
2025/01/23
1300
算法入门(三) -- 概率论基础
我的机器学习概率论篇排列 组合古典概率联合概率条件概率全概率公式贝叶斯公式独立事件随机变量离散型随机变量连续型随机变量期望和方差三个基本定理参数估计
前言: 概率论的理解有些抽象,掌握概率论的方法,用实际样本去无限接近真实,熟练掌握并且使用一些最基本的概念是前提,比如,均值,方差 排列 组合 计算各种公式的基础 排列 image.png
DC童生
2018/04/27
2.1K0
我的机器学习概率论篇排列 组合古典概率联合概率条件概率全概率公式贝叶斯公式独立事件随机变量离散型随机变量连续型随机变量期望和方差三个基本定理参数估计
概率论05 离散分布
我们已经知道什么是离散随机变量。离散随机变量只能取有限的数个离散值,比如投掷一个撒子出现的点数为随机变量,可以取1,2,3,4,5,6。每个值对应有发生的概率,构成该离散随机变量的概率分布。 离散随机变量有很多种,但有一些经典的分布经常重复出现。对这些经典分布的研究,也占据了概率论相当的一部分篇幅。我们将了解一些离散随机变量的经典分布,了解它们的含义和特征。  伯努利分布 伯努利分布(Bernoulli distribution)是很简单的离散分布。在伯努利分布下,随机变量只有两个可能的取值: 1和0。随机
Vamei
2018/01/18
1.2K0
概率论05 离散分布
任何时候你都不应该忽视概率统计的学习!
基于概率论的数理统计也即概率统计是现代科学研究的基础工具与方法论,错误的理解与使用概率统计也可能会导致完全错误的研究结果。即使现在,我们随便抽出一篇微生物组学研究的paper,都有可能发现其中概率统计的瑕疵,诸如线性回归算法样品数少于变量数、R2与P值未作校正、聚类结果未作检验等。无论任何时候,我们都应该尝试去反思:我的概率统计知识够吗?
SYSU星空
2022/05/05
8390
任何时候你都不应该忽视概率统计的学习!
[Skill]程序员须掌握的概率统计基础知识
计算机科学作为理工科一个独特的分支,本质上仍然是建立在逻辑思维上的一门科学,良好的概率论思维有助于设计高效可行的算法。
TOMOCAT
2020/06/10
6150
一文搞懂常见概率分布的直觉与联系
数据科学,不管它到底是什么,其影响力已不可忽视。“数据科学家比任何软件工程师都更擅长统计学。”你可能在本地的技术聚会或者黑客松上无意中听到一个专家这么说。应用数学家大仇得报,毕竟从咆哮的二十年代起人们就不怎么谈论统计学了。以前聊天的时候,像你这样的工程师,会因为分析师从来没听说过Apache Bikeshed(口水仗)这个分布式评论格式编排项目而发出啧啧声。现在,你却突然发现人们在聊置信区间的时候不带上你了。为了融入聊天,为了重新成为聚会的灵魂人物,你需要恶补下统计学。不用学到正确理解的程度,只需学到让人们(基于基本的观测)觉得你可能理解了的程度。
zenRRan
2019/11/20
1.9K0
一文搞懂常见概率分布的直觉与联系
(四)概率
对于基础概念就不在此赘述,挑当中的几个easy混淆的点和关键点说说
全栈程序员站长
2022/07/09
4180
(四)概率
超几何分布与二项分布及其期望
惊奇的发现选修2-3上有期望的介绍,不过我没有课本啊qwq。只能去网上找资料了。。
attack
2018/09/17
1.2K0
连载 | 概率论与数理统计(3) – 一维离散型随机变量及其Python实现
上一小节对随机变量做了一个概述,这一节主要记录一维离散型随机变量以及关于它们的一些性质。对于概率论与数理统计方面的计算及可视化,主要的Python包有scipy, numpy和matplotlib等。
小莹莹
2018/07/24
1.3K0
连载 | 概率论与数理统计(3) – 一维离散型随机变量及其Python实现
从贝叶斯定理到概率分布:综述概率论基本定义
选自 Medium & analyticsvidhya 本文从最基础的概率论到各种概率分布全面梳理了基本的概率知识与概念,这些概念可能会帮助我们了解机器学习或开拓视野。这些概念是数据科学的核心,并经常出现在各种各样的话题上。重温基础知识总是有益的,这样我们就能发现以前并未理解的新知识。 简介 在本系列文章中,我想探讨一些统计学上的入门概念,这些概念可能会帮助我们了解机器学习或开拓视野。这些概念是数据科学的核心,并经常出现在各种各样的话题上。重温基础知识总是有益的,这样我们就能发现以前并未理解的新知识,
小莹莹
2018/04/24
1.2K0
从贝叶斯定理到概率分布:综述概率论基本定义
机器学习数学基础:随机事件与随机变量
所谓机器学习和深度学习, 背后的逻辑都是数学, 所以数学基础在这个领域非常关键, 而统计学又是重中之重, 机器学习从某种意义上来说就是一种统计学习。
Datawhale
2020/07/02
1.1K0
【机器学习】在不确定的光影中:机器学习与概率论的心灵共舞
机器学习已经成为现代科技的核心驱动力之一,而背后支撑这一技术的基础之一就是概率论。在机器学习中,概率论帮助我们理解和处理不确定性,进而建立模型进行预测和决策。无论是在分类、回归任务,还是在强化学习与生成模型中,概率论都起着至关重要的作用。
半截诗
2025/01/09
1770
【机器学习】在不确定的光影中:机器学习与概率论的心灵共舞
统计01:概述
作者:Vamei 出处:http://www.cnblogs.com/vamei 严禁转载。 
Vamei
2018/09/25
3610
统计01:概述
推荐阅读
相关推荐
常见概率分布
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档