前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Top 5 Google Cloud Tools for Application Development

Top 5 Google Cloud Tools for Application Development

作者头像
用户4822892
修改于 2019-10-23 02:47:21
修改于 2019-10-23 02:47:21
1.2K0
举报

Top Google Cloud tools for web application development. Google gives a wide scope of instruments and administrations for its clients. As one of the top cloud suppliers, Google must stay aware of the aggressive idea of the cloud and discharge administrations to address the issues of its clients. Like AWS and Azure, there is a scope of Google Cloud apparatuses for clients to look over to help facilitate a portion of the pressure that accompanies the open cloud.

Top Google Cloud Tools for Mobile and Web App Development

Here are the top 5 google cloud tools for web application development and mobile app development.

1. Google Cloud Deployment Manager

Designers use content to computerize ordinary assignments and add proficiency to their usage. Framework as code (IaC) is the most complete alternative for scripting on the grounds that it makes a deliberation layer among applications and the basic foundation to mechanize every single operational undertaking.

Google's IaC tool, Google Cloud Deployment Manager, conveys the foundation as a repeatable, decisive code. It can utilize around three record types for every Google Cloud Platform (GCP) sending - an arrangement document in YAML, an outline document and a layout record in Python or Jinja. The arrangement document is the main required record, the other two sorts are discretionary.

Checkout: Top Web Designing Hacks and Trends for Web Development

The design record is the source code for the Deployment Manager, which audits the document's substance and conveys setups dependent on predefined layouts and condition requirements. These design documents are part of two segments: imports, which are a rundown of records utilized by the setup, and assets, which records all the GCP administrations to be conveyed.

As of now, Deployment Manager doesn't bolster all Google Cloud devices and administrations, yet it works with the vast majority of the center contributions, including Compute Engine, BigQuery and Cloud Storage. While it is a free device, standard charges apply for any related administrations it sends.

2. Google Cloud Anthos

Endeavors that move to the cloud regularly battle to adjust their inheritance applications to cloud-local administrations. Previously, this issue was tended to however virtualization, yet regarding the cloud as simply one more facilitating condition implied doing without advantages around proficiency, versatility, and adaptability. With Google Cloud Anthos, Google clients don't need to go that course.

Google Cloud Anthos is a cloud-freethinker holder condition that utilizations Kubernetes and Istio for compartment organization and traffic the executives, individually. It's a product stack that can likewise keep running on an association's current equipment.

Checkout: Developers Must Avoid These Web Development Trends

Google's involvement with compartments is a significant selling point for Anthos. The objective of this Google Cloud apparatus is to determine the basic issues with the containerization of inheritance application by modifying VM pictures into holders, before sending on Anthos.

At its center, Anthos is a holder bunch controlled by Google Kubernetes Engine (GKE) and GKE On-Prem for crossbreed structures. Notwithstanding the establishment of GKE, Anthos incorporates a suite of administrations to deal with setup the executives, for example, Anthos Config Management, Traffic Director and Stackdriver - among others.

3. Google Access Transparency

Google added Access Transparency to empower clients to view Google's administration logs. Straightforwardness has been an immense worry for cloud clients in ongoing years. They need to know how their cloud supplier deals with the fundamental framework that supports their applications.

IT groups can utilize Access Transparency to screen Google's inward logs relating to their records. The logs plot what precisely a Google administrator did to determine any issues that may have happened with particular client care. This Google Cloud instrument works with six other Google administrations: Compute Engine, App Engine, Cloud Storage, Persistent Disk, Cloud Key Management Service and Cloud Identity and Access Management - with more increases in transit.

Checkout: Top 5 Programming Languages for Web Development

Over helping screen any upkeep being done to their outstanding tasks at hand, Access Transparency likewise helps administrators with framework reviews. They can join Access Transparency signs into existing occasions the board devices and security apparatuses to make their frameworks review prepared - streamlining what might somehow or another be a long and strenuous procedure.

Checkout: What is an API and How it works?

Clients still need more regarding straightforwardness from their cloud suppliers - including Google - however, it won't occur incidentally. Security is a top need for cloud suppliers, so it will set aside some effort to work out precisely how to give the client the entrance they need without violating any limits. Be that as it may, Google Access Transparency is a positive development for clients and suppliers to compromise with someplace.

4. Firebase Realtime Database

NoSQL databases are significant to a scope of user types that depend on huge unstructured datasets, fast improvement, and strong sending. Google offers an assortment of NoSQL database services for portable and web application advancement, including Firebase Realtime Database and Google Cloud Firestore database.

Checkout: What is Serverless Web Application Development?

Firebase Realtime Database stores information in JSON to give information progressively. Engineers can utilize it with iOS, JavaScript SDKs, Android, and REST APIs. Realtime Database stores information as a JSON tree, so it's ideal whenever utilized for basic information. This administration can't deal with information in a various leveled way, nor is it appropriate for a lot of information.

5. Google Cloud Firestore

Then again, Google Cloud Firestore is a superior fit for complex outstanding burdens. It is the more current of the two contributions, so it gives a greater number of highlights and usefulness than Firebase. It's additionally more qualified for new application advancement ventures since it tends to be utilized for server-side improvement through Node.js, Java, Python, and Go SDKs. Regarding information structure, Firestore stores use records that contain fields that guide to genuine worth, which is at that point stores as accumulations and later composes dependent on related information.

Checkout: Top Web Development Technologies and Frameworks

Both Google Cloud instruments support disconnected modes to give clients greater adaptability. Regarding security, each NoSQL database utilizes its own guidelines language that clients need to pursue. These standards give granular command over what's put away in a database and who can get to it.

Checkout: Types of APIs

Choices on which administration to choose will probably rely upon the unwavering quality and versatility necessities for your application. Firebase is constrained to the accessibility zones inside a solitary district, while Firestore is a multiregional administration. Between the two, Firestore is the more adaptable choice with current cutoff points of 1 million simultaneous associations and 10,000 composes every second. Be that as it may, if the decision between the two is excessively troublesome, Firebase engineers can utilize the two databases on a similar undertaking.

Checkout: Latest Web Application Development Trends

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文系转载,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
手把手教你实现共享单车数据分析及需求预测
作者:曼纽尔·阿米纳特吉(Manuel Amunategui)、迈赫迪·洛佩伊(Mehdi Roopaei)
IT阅读排行榜
2019/07/09
4.6K0
手把手教你实现共享单车数据分析及需求预测
Python业务分析实战|共享单车数据挖掘
自行车共享系统是传统自行车租赁的新一代,从注册会员、租赁到归还的整个过程都是自动化的。通过这些系统,用户可以很容易地从一个特定的位置租用自行车,并在另一个位置归还。目前,全球大约有500多个共享单车项目,这些项目由50多万辆自行车组成。今天,由于它们在交通、环境和健康问题上的重要作用,人们对这些系统产生了极大的兴趣。
数据STUDIO
2021/11/17
1.7K0
Python业务分析实战|共享单车数据挖掘
爱数课实验 | 首尔共享自行车需求数据可视化分析
简介:近些年,“共享单车”模式迅速地在全球各大城市中流行起来,但随着资本的逐步退潮,共享单车企业需寻求新的盈利模式,首要任务便是探究共享单车使用量的影响因素。本案例使用Matplotlib包和Seaborn的可视化库,对首尔地区一共享单车公司在2017年到2018年的使用量数据集进行可视化分析,并利用线性回归等模型预测单车使用量,得出共享单车使用量影响因素分析结论。
数据科学人工智能
2022/04/01
1.6K0
爱数课实验 | 首尔共享自行车需求数据可视化分析
Kaggle共享单车数据分析——数据可视化
本文数据来源于Kaggle_Bike_Sharing_Demand。主要内容为模型前期的简要数据分析及可视化。
带萝卜
2020/10/26
1.5K0
Kaggle共享单车数据分析——数据可视化
基于LSTM模型的自行车需求预测
今天给大家带来一篇新的kaggle数据分析实战案例:基于长短期记忆网络(LSTM)模型的伦敦自行车需求预测分析。本文的两个亮点:
皮大大
2022/02/22
1.6K0
基于LSTM模型的自行车需求预测
机器学习预测作物产量模型 Flask 部署详细教程(附python代码演练)
作物产量预测是农业中重要的预测分析技术。这是一种农业实践,可以帮助农民和农业企业预测特定季节的作物产量、何时种植作物、何时收获以获得更高的作物产量。预测分析是一种强大的工具,可以帮助改善农业决策。它可用于作物产量预测、风险缓解、降低化肥成本等。
磐创AI
2023/08/29
2.4K1
机器学习预测作物产量模型 Flask 部署详细教程(附python代码演练)
用python对人们使用自行车情况分析与预测
这篇博客中,主要用到了pandas的数据清洗和分析工作,同时也用到了sklearn中回归预测的知识,非常的简单,但是产生了较好的预测效果。所有的数据都是可以下载的,重复这些代码也是能够完全重现以上的这些结果的,如果你有疑问,那么可以参考英文原博客[blog1] [blog2],和原作者的github可以下载完整的代码和数据, 原文: https://jakevdp.github.io/blog/2014/06/10/is-seattle-really-seeing-an-uptick-in-cycli
机器学习AI算法工程
2018/03/14
1.5K0
用python对人们使用自行车情况分析与预测
使用交互式地图和动画可视化伦敦的自行车流动性(上)
近年来,自行车共享系统已经成为流行的出行方式,为大都市地区的市民提供了一种绿色、灵活的交通方式。世界上许多国家的政府都认为这是一种创新战略,可能会带来许多社会效益。例如,它可以减少汽车的使用,从而减少温室气体排放,缓解城市中心的交通拥堵。
AiTechYun
2020/02/23
9290
通过Amazon Machine Learning建立一个数值回归模型
实际生产中,业务经常会碰到预测未来值的情况。预测可以帮助进行更好的资源规划及业务决策制定。通常情况下,鉴于无法承受如数值回归等复杂模型所带来的开销,机构安于使用过去一阶段平均值并附加一些假想变化这种廉价的模式。 本篇博文以自行车租赁程序为例,预测一个特定城市每个小时的自行车需求。在这个情景中,你需要机器学习模型来基于一组特征(或者predictor)来预测一个值。在这里,你将基于 Kaggle上开放的一些数据来建立一个回归模型。通过学习建立这个模型,你可以在自己的场景中应用自己的机器学习。 分析和机器学习
用户1737318
2018/06/05
5350
用于时间序列概率预测的分位数回归
以往的回归模型实际上是研究被解释变量的条件期望。⽽⼈们也关⼼解释变量与被解释变量分布的 中位数,分位数呈何种关系。它最早由Koenker和Bassett(1978)提出。
数据STUDIO
2024/05/10
8140
用于时间序列概率预测的分位数回归
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
用户7014905
2023/03/30
4.5K0
10万元奖金,开启“智源粒子分类赛”下半时,三篇高分Baseline带你突破瓶颈!
高能质子对撞中会产生大量粒子团喷注(jet),喷注可以根据其不同内在特性分为胶体喷注、轻夸克喷注、魅夸克喷注、美夸克喷注。
大数据文摘
2020/03/04
6730
10万元奖金,开启“智源粒子分类赛”下半时,三篇高分Baseline带你突破瓶颈!
生存分析——泊松回归(LightGBM)实现生存分析(四)
来看一个比较特殊的Survival分析建模的案例,利用的是半参模型:Poisson Regression 具体参考文章:Survival Analysis with LightGBM plus Poisson Regression 里面的建模思路非常有意思,不适合工业落地,不过咨询公司的data scientist看过来~
悟乙己
2021/12/07
1.6K0
生存分析——泊松回归(LightGBM)实现生存分析(四)
万字案例 | 用Python建立客户流失预测模型(含源数据+代码)
客户流失是所有与消费者挂钩行业都会关注的点。因为发展一个新客户是需要一定成本的,一旦客户流失,成本浪费不说,挽回一个客户的成本更大。
统计学家
2020/06/04
11.4K3
数据挖掘机器学习[三]---汽车交易价格预测详细版本{特征工程、交叉检验、绘制学习率曲线与验证曲线}
 题目出自阿里天池赛题链接:零基础入门数据挖掘 - 二手车交易价格预测-天池大赛-阿里云天池
汀丶人工智能
2022/12/21
7120
数据挖掘机器学习[三]---汽车交易价格预测详细版本{特征工程、交叉检验、绘制学习率曲线与验证曲线}
使用机器学习实现压力检测详细教程(附Python代码演练)
压力是身体和心灵对要求或挑战性情况的自然反应。它是身体对外部压力或内部思想和感受做出反应的方式。压力可能由多种因素引发,例如工作压力、经济困难、人际关系问题、健康问题或重大生活事件。
磐创AI
2023/08/29
5560
使用机器学习实现压力检测详细教程(附Python代码演练)
使用Python实现深度学习模型:智能交通信号优化
智能交通信号优化是现代城市交通管理中的重要任务。通过深度学习技术,可以分析和预测交通流量,优化交通信号控制,提高交通效率,减少拥堵。本文将介绍如何使用Python和深度学习技术来实现智能交通信号优化。
Echo_Wish
2024/08/22
2480
使用Python实现深度学习模型:智能交通信号优化
用于时间序列概率预测的共形分位数回归
QR 估算的是目标变量的条件量值,如中位数或第 90 个百分位数,而不是条件均值。通过分别估计不同水平预测变量的条件量值,可以很好地处理异方差。虽然大多数情况下量化值可以提供准确的预测区间,但当模型假设被违反时,量化值预测可能会不准确。
数据STUDIO
2024/05/10
4360
用于时间序列概率预测的共形分位数回归
时间序列概率预测的共形预测
现实世界中的应用和规划往往需要概率预测,而不是简单的点估计值。概率预测也称为预测区间或预测不确定性,能够提供决策者对未来的不确定性状况有更好的认知。传统的机器学习模型如线性回归、随机森林或梯度提升机等,旨在产生单一的平均估计值,而无法直接给出可能结果的数值范围。如何从点估计扩展到预测区间,正是现代时间序列建模技术所关注的重点。
数据STUDIO
2024/05/10
1.9K0
时间序列概率预测的共形预测
Kaggle Titanic 生存预测比赛超完整笔记(上)
一直想在Kaggle上参加一次比赛,奈何被各种事情所拖累。为了熟悉一下比赛的流程和对数据建模有个较为直观的认识,断断续续用一段时间做了Kaggle上的入门比赛:Titanic: Machine Learning from Disaster。 总的来说收获还算是挺大的吧。本来想的是只简单的做一下,在整个进行的过程中发现有很多好的Kernels以及数据分析的流程和方法,但是却鲜有比较清晰直观的流程和较为全面的分析方法。所以,本着自己强迫症的精神,同时也算对这次小比赛的一些方式方法以及绘图分析技巧做一个较为系统的
AI研习社
2018/03/16
2.9K0
Kaggle Titanic 生存预测比赛超完整笔记(上)
推荐阅读
手把手教你实现共享单车数据分析及需求预测
4.6K0
Python业务分析实战|共享单车数据挖掘
1.7K0
爱数课实验 | 首尔共享自行车需求数据可视化分析
1.6K0
Kaggle共享单车数据分析——数据可视化
1.5K0
基于LSTM模型的自行车需求预测
1.6K0
机器学习预测作物产量模型 Flask 部署详细教程(附python代码演练)
2.4K1
用python对人们使用自行车情况分析与预测
1.5K0
使用交互式地图和动画可视化伦敦的自行车流动性(上)
9290
通过Amazon Machine Learning建立一个数值回归模型
5350
用于时间序列概率预测的分位数回归
8140
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
4.5K0
10万元奖金,开启“智源粒子分类赛”下半时,三篇高分Baseline带你突破瓶颈!
6730
生存分析——泊松回归(LightGBM)实现生存分析(四)
1.6K0
万字案例 | 用Python建立客户流失预测模型(含源数据+代码)
11.4K3
数据挖掘机器学习[三]---汽车交易价格预测详细版本{特征工程、交叉检验、绘制学习率曲线与验证曲线}
7120
使用机器学习实现压力检测详细教程(附Python代码演练)
5560
使用Python实现深度学习模型:智能交通信号优化
2480
用于时间序列概率预测的共形分位数回归
4360
时间序列概率预测的共形预测
1.9K0
Kaggle Titanic 生存预测比赛超完整笔记(上)
2.9K0
相关推荐
手把手教你实现共享单车数据分析及需求预测
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档