从原始数据转换为特征向量的过程。 特征工程是机器学习中最重要的起始步骤,会直接影响机器学习的效果,并通常需要大量的时间。 典型的特征工程包括数据清理、特征提取、特征选择等过程。
在金融行业,风险控制(风控)是核心环节,它关乎资产安全、合规性以及机构的长期稳健发展。随着大数据时代的到来,金融机构面临着前所未有的数据量和复杂性。在这样的背景...
阅读完这篇文章,你应该已经掌握了对构建有效的机器学习模型至关重要的多种特征工程技巧。恰当地应用这些最佳的特征工程技术,不仅能够帮助我们更高效地处理数据,还能为公...
机器学习的特征工程(Feature Engineering)是机器学习项目中一个至关重要的步骤,它涉及从原始数据中提取、选择和转换特征,以便更好地训练机器学习模...
我主要做了归一化,然后选取了线性相关度高的特征,最后进行了pca降维成6个组分(可解释0.9以上)。
在机器学习和数据科学的世界里,数据的质量是建模成功与否的关键所在。这就是特征工程和数据预处理发挥作用的地方。本文总结的这些关键步骤可以显著提高模型的性能,获得更...
振弦采集仪是一种用于监测结构振动和变形的设备,它通过采集振弦信号来分析结构的动态特性。在大型工程安全监测中,振弦采集仪具有重要的应用价值,可以帮助工程师和监测人...
今天云朵君和大家一起学习如何使用探索性数据分析从时间序列数据中获取信息,并使用 Python 加强特征工程设计。
特征工程的问题往往需要具体问题具体分析,当然也有一些暴力的策略,可以在竞赛初赛前期可以带来较大提升,而很多竞赛往往依赖这些信息就可以拿到非常好的效果,剩余的则需...
EDA是任何类型的数据科学研究的基本步骤,它允许理解数据的性质和特性,并为特征工程奠定基础,而特征工程反过来又可以显着提高模型性能。
以上这些特征工程的操作只是一些非常常见的操作,实际过程当中我们会结合数据来进行一些特定的特征工程操作(特征工程的操作以及特征的选取往往是通过假设的方式来确定的,...
时间序列数据的特征工程是一种技术,用于从时间序列数据中提取信息或构造特征,这些特征可用于提高机器学习模型的性能。以下是一些常见的时间序列特征工程技术:
GPT 是基于 Transformer 架构的预训练语言模型。以下是 GPT 发展历程的重要时间节点:
特征工程是指使用专业的背景知识和技巧处理数据,使得特征能在机器学习算法上发生更好的作用的过程。更好的特征意味着更强的灵活性,只需简单模型就能得到更好的结果,因此...
通过本教程,您学习了如何在Python中使用CatBoost进行特征组合与建模技巧。我们介绍了特征组合、类别型特征处理、学习率调整和交叉验证等常用的特征工程和建...
表格数据的特征工程本是一个模块化过程,目标是对数据集进行编码以获得更好的模型精度。
在机器学习任务中,特征工程是至关重要的一步。对于分类特征的处理尤为重要,而CatBoost是一种能够自动处理分类特征的梯度提升决策树算法。本教程将详细介绍如何在...
特征工程是机器学习中至关重要的一部分,它直接影响到模型的性能和泛化能力。在LightGBM中进行高级特征工程可以进一步提高模型的效果。本教程将详细介绍如何在Py...