首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >深度 | 从规则推理到数据学习:人工智能该学习人类的思维方式吗?

深度 | 从规则推理到数据学习:人工智能该学习人类的思维方式吗?

作者头像
机器之心
发布于 2018-06-08 05:21:49
发布于 2018-06-08 05:21:49
7500
举报
文章被收录于专栏:机器之心机器之心

选自sciencemag

作者:Matthew Hutson

机器之心编译

参与:乾树、刘晓坤

近日,《Science》自由撰稿人 Matthew Hutson 在该期刊上发文,从婴儿学习、先验知识、因果推理和物理直觉的角度讨论了人工智能的当前现状,并以目前已被视为过时的基于规则的 AI 和当下最热门的基于机器学习的 AI 作为两个极端参考(人类智能处于过渡阶段),帮助人们思考人工智能的未来走向。

2 月的某个周六上午,穿着条纹衬衫和紧身裤的 3 岁孩童 Chloe,正在摆弄它的新玩具。她的爸爸,纽约大学的发展认知科学家 Gary Marcus 带回了一些粘连乐高积木的胶带。精通乐高的 Chloe 对此很感兴趣。

但她一直在向上搭。她可以借助胶带弄出别的花样吗?Marcus 建议靠着桌边开始搭建。十分钟后,Chloe 开始在墙上贴胶带。「我们最好在妈妈回来之前做完,」Marcus 一本正经地说,「她会不高兴的。」(剧透:墙面漆会受影响)

其实 Marcus 暗暗地在做一个实验。Chloe 会将她学到的知识应用到新的环境中去吗?过了几分钟,她就依墙搭建了一个乐高雕塑。「爸爸,我做到了!」她大叫着。Chloe 正在展示关于适应性的常识,这是计算机科学家一直在努力复制的一种智能。Marcus 认为,人工智能领域(AI)会从 Chole 搭积木这件事上学到一些经验。

机器学习研究员认为,基于海量数据训练的计算机可以学习任何东西,包括常识,而常识几乎没有任何编程规则。这些专家在我看来「有一个盲点,」Marcus 说,「这是一种社会学的东西,通常与物理学中的简单性原则相悖。」

他说,计算机科学家忽视了认知科学和发展心理学数十年来的研究,即人类有种本能:在出生时或儿童早期出现的直觉编程能力,这帮助我们像 Chloe 一样抽象并灵活地思考。

然而,许多计算机科学家都在急切地探索简单的人工智能的极限,即便他们在机器学习领域取得不少成就。「我认为,大多数机器学习研究员对于投入大量背景知识的做法持有偏见,因为从某种意义上说,我们认为这是一种失败,」科瓦利斯俄勒冈州大学的计算机科学家 Thomas Dietterich 说。

他补充道,计算机科学家也很喜欢简单,并且厌恶调试复杂的代码。麻省理工学院(MIT)的心理学家 Josh Tenenbaum 说,像 Facebook 和 Google 这样的大公司是促使人工智能向这个方向发展的另一个因素。这些公司最关心的是狭义定义的近期问题,例如网络搜索和人脸识别,一个「小白」AI 系统可以在大量数据集上进行训练并且成效显著。

但从长远来看,计算机科学家期望人工智能将承担更多更棘手的任务,这需要灵活性和常识。他们想创造解说新闻的语音机器人,可以解决城市交通拥堵的自动驾驶出租车,以及护理老年人的机器人。「如果我们想要创造一个像 C-3PO 一样与人类世界进行交互的机器人,」Tenenbaum 说,「我们将需要在更通用的环境中解决所有这些问题。」

一些计算机科学家已经在尝试。今年 2 月,麻省理工学院希望用工程术语来理解人类智能,并启动了 Intelligence Quest 研究计划,现已筹集数亿美元。研究员希望这些工作将 AI 发展到纯机器学习和纯本能之间的领域。它们会按照一些嵌入式规则启动,但在之后开始学习。Tenenbaum 说,「从某种意义上说,这就像古老的先天或后天争论,现在已经转化为工程术语。」

这项工作包括发现婴儿知道什么时候学到了什么,这是可以应用到机器学习上的经验。华盛顿西雅图艾伦人工智能研究所(AI2)首席执行官 Oren Etzioni 说,这需要很长时间。AI2 最近宣布斥资 1.25 亿美元来开发和测试 AI 的常识。Etzioni 说:「我们希望 AI 建立在人脑天生的表示结构上,但我们不了解大脑如何处理语言、推理过程和知识。」

不同的思维

随着时间的推移,人工智能(AI)已经从依赖编程规则和逻辑的算法转向机器学习,机器学习的算法仅包含少量规则并提取训练数据反复训练来学习。人的思维处在中间位置。

最后,Tenenbaum 说:「我们正在认真对待人工智能最古老的梦想之一:你可以制造一台像人类一样发展智能的机器,从一个婴儿开始,像孩子一样学习。」

在过去几年里,AI 实现了翻译、诊断癌症并在扑克比赛中击败人类。但是对于每一场胜利,都存在一些愚蠢的错误。图像识别算法现在可以比人类更准地区分狗的品种,但有时它会把吉娃娃误认为是蓝莓松饼。人工智能可以用超人的技巧来玩经典的雅达利游戏,比如太空侵略者,但是当你仅留下一个外星人时,AI 就会莫名其妙地挂掉。

机器学习应该对这些成功和失败负责。从广义上说,人工智能已经从依赖许多编程规则(也称为良好的老式 AI 或 GOFAI)的软件转移到通过反复训练学习的系统。由于计算机硬件、大数据和神经网络算法的发展,机器学习取得了飞跃。

这些网络其实是通过简单的计算单元来模拟大脑中的神经元,在提取训练数据时创建更强或更弱的连接。

凭借 Alpha,Google 的 DeepMind 将深度学习推向了顶峰。每次去掉规则后,Alpha 似乎都会有所提升。2016 年,AlphaGo 击败了的人类围棋冠军。2017 年,编程规则更少的 AlphaGo Zero 轻松击败 AlphaGo。几个月后,一个更简单的称为 AlphaZero 的系统击败了 AlphaGo Zero,并且还掌握了国际象棋。

1997 年,基于规则的经典 AI,即 IBM 的 Deep Blue 击败了国际象棋冠军 Garry Kasparov。但事实证明,真正的国际象棋精湛技术不能根据规则得到,而是通过经验推理出的最佳走位。所以通过反复学习的 AlphaZero 可以击败 Deep Blue,以及当今最好的国际象棋程序和每个人类冠军。

然而像 Alpha 这样的系统显然不能学习常识。要在 21x21 而不是 19x19 的棋盘上下围棋,AI 必须重新学习。在 20 世纪 90 年代后期,Marcus 训练了一个接收输入数字并将其输出的网络,这是可想象的最简单的任务。

但他只用偶数来训练它。当用奇数进行测试时,网络崩溃了。它不能将学习从一个领域应用到另一个领域,就像 Chloe 开始将她的乐高横向建造时那样。答案不在于基于规则的 GOFAI。

根据显式的规则,例如「如果腿数= 4,尾巴=真,尺寸>猫」,一个孩子识别不出一条狗。识别更加细致,三条腿的吉娃娃不会活过 3 岁。人类不是一张白板,也不是硬连线的。相反,有证据表明我们有倾向性,帮助我们学习知识并进行推理。我们并没有遗传到一个技能包,只是靠着本能去学习。

哈佛大学心理学家 Elizabeth Spelke 认为,我们至少有四种「核心知识」系统,使我们在理解对象、行为、数量和空间方面领先一步。例如,我们是天生的物理学家,能够快速理解物体及其相互作用。有研究表明,出生 3 天的婴儿会将部分隐藏的棒的两端看做同一实体,这表明我们的大脑可能倾向于感知一致性物体。

我们也是天生的心理学家。在 2017 年的一项科学研究中,Spelke 实验室的研究生 Shari Liu 发现,10 个月大的婴儿可以推断出,当一个动画角色爬上一个更大的山丘形成一个形状而非另一个时,角色必须更倾向前者。Marcus 证明了 7 个月大的婴儿可以学习规则。

当听到不同于以往的三词短句(「ga ti ga」)的(「wo fe fe」)时,它们表现出惊喜。后来的研究表明,新生儿表现出类似的行为。

婴儿的本能可以帮助我们学习常识,迄今为止人工智能算法对此难以捉摸。

Marcus 给出了他认为应该融入 AI 的 10 种人类本能的最低清单,其中包括因果关系,成本效益分析和类别 vs 实例(狗 vs 我的狗)的概念。去年 10 月在纽约大学,他在 AI 是否需要「更人性化」的辩论中宣布他的清单,纽约大学计算机科学家、Facebook 首席人工智能科学家 Yann LeCun 也参加了此次辩论。

为了证明本能的重要性,Marcus 展示了一张羊羔下山的的幻灯片。他说,「他们不会进行百万次试验性学习,如果它们犯错,这会是一个问题。「LeCun 不同意多数发展心理学家的观点,认为婴儿可能会在几天内学会这种能力,如果是的话,机器学习算法也可能会这样。

他的坚持来自经验。他从事图像识别工作,并于 20 世纪 80 年代开始提出手动编码算法识别图片中的特征不再是必需的。三十年后,他被证明是正确的。批评者问他:「你既然可以编写出来,为什么还要去学会它?」他的回答是:编写很难,如果你不完全明白事情是如何运作的,那么你设计的规则可能是错误的。

但 Marcus 指出,LeCun 自己将 10 个关键本能之一嵌入到他的图像识别算法中:平移不变性,无论物体出现在视野中的哪个位置都能被识别出来。

平移不变性是卷积神经网络的特性,或者说它是 LeCun 成名的理论。在过去的 5 年里,它们已经成为图像识别和其他 AI 应用的核心,并引发了当前深度学习的热潮。

LeCun 告诉 Science,平移不变也可以通过更好的通用学习机制习得。他说,「很多这些特性会因为了解这个世界如何运作而自发地出现。」加拿大多伦多大学深度学习的先驱 Geoffrey Hinton 对此表示赞同。

Hinton 说:「大多数相信本能知识的人有一种毫无根据的观点,即从头开始学习数十亿参数很困难。但我认为深度学习最近的进展表明它实际上非常容易。」

关于将人工智能置于纯学习与纯本能之间的争论将继续。但是这个问题掩盖了一个更实际的问题:如何设计和编码这种混合机器。尚不清楚如何将机器学习及数十亿个神经网络参数与规则和逻辑结合起来。

也不清楚如何确定最重要的本能并灵活编码它们。但是这并没有阻止一些研究员和公司去尝试。

位于澳大利亚悉尼的新南威尔士大学的机器人实验室装修整洁,看起来像客厅和厨房,冰箱里装满了 James Boag 的啤酒。计算机科学家 Michael Thielscher 解释说,该实验室是国内机器人的测试平台。他的团队试图赋予丰田护理机器人(HSR)两种人性化的能力。该机器人有一条机械臂和一个脸部屏幕。

首先,他们希望对 HSR 进行编程,将大问题分解为更小、更简单的问题,就像一个人将解决方案分成几个步骤一样。其次,他们想让机器人像人类一样能够理解信念和目标。如果一个人要求它拿起一个红色杯子,但是只看到一个蓝色杯子和一个红色碟子,HSR 会如何回应?

到目前为止,他们的软件显示出一些人性化的能力,包括选择蓝杯而不是红盘。但是更多的规则被编入系统,这远多于 Thielscher 想要的。他的团队不得不告诉他们的 AI,杯子通常比红色更重要。理想情况下,机器人将具有社交能力,可以快速学习人类的偏好。

其它的研究员正在努力为他们的人工智能注入像婴儿一样的天生的直觉。伦敦的 DeepMind 的计算机科学家开发了称为交互网络的东西。它们加入了一个对物理世界的假设:离散对象普遍存在并且具有不同的相互作用。

如同婴儿可以很快将世界分解为交互的实体,这些系统很容易学习对象的属性和关系。他们的结果表明,交互网络可以比一般的神经网络更准确地预测绳子下落和球在框中弹跳的行为。

机器学习的胜利,2017 年 AlphaGo 击败围棋冠军柯杰。

Vicarious 是位于加利福尼亚州旧金山的一家机器人软件公司,该公司结合所谓的模式网络(schema network)将人工智能推向巅峰。这些系统也假设对象和交互的存在,但也试图推断连接它们的因果关系。通过大量的学习,该公司的软件可以像人类一样根据预期的结果制定计划。(我不想让我的鼻子痒,抓它可能会有帮助。)

研究人员将他们的方法与最先进的神经网络在 Atari 游戏 Breakout 中进行了比较,玩家通过一块板来转移球并敲出砖块。因为模式网络可以了解因果关系(例如,无论速度如何,球碰到砖头都会敲掉砖块这一事实)当游戏发生变化时,也不需要额外的训练。

你也可以移动目标砖块或让玩家拨动三个球,但是模式网络仍然在游戏中占上风。其它网络挂掉了。

除了我们天生的能力之外,人类也从大多数 AI 没有的东西中受益:身体。为了帮助软件认知世界,Vicarious 将软件嵌入到智能体中,因此它可以探索虚拟环境,就像婴儿可能会通过倾倒一组积木块来学习重力一样。今年 2 月,Vicarious 提出了一个系统,通过一个微小的虚拟角色穿越地形来寻找 2D 场景中的有界区域。

正如它探索的那样,该系统学习了遏制的概念,它比标准的被动学习场景的图像识别卷积网络能够更快地理解新的场景。概念(普适的知识)对常识至关重要。

「在机器人学中,机器人能够推断新情况是非常重要的,」Vicarious 的联合创始人 Dileep George 说。今年晚些时候,该公司将在仓库和工厂进行试点测试,帮助机器人在打包运输前提取、组装并标注物体。

最具挑战性的任务之一是如何灵活编码本能,以便 AI 可以应对一个并不总是遵循规则的混乱世界。例如,自动驾驶汽车不能指望其他司机遵守交通法规。为了应对这种不可预测性,加州斯坦福大学的心理学家和计算机科学家 Noah Goodman 帮助开发了概率编程语言(PPL)。

PPL 将计算机代码的严密结构与概率论结合起来,类似人类逻辑的方式,但同时也考虑到了不确定性:

如果草地潮湿,可能会下雨,但也许有人打开了洒水装置。重要的是,PPL 可以与深度学习网络相结合,以融入拓展学习。

在 Uber 工作的时候,Goodman 和其他人发明了这种称为 Pyro 的「深度 PPL」。该出行公司正在探索 Pyro 的用途,例如调派司机以及在道路施工和比赛日期间自适应规划路线。Goodman 说,PPL 不仅可以推理物理状态和物流,还可以推断人们交流及应对棘手问题的表达形式,如夸张、讽刺。

Chloe 可能在十几岁之前都不会讽刺,但她对语言的天生诀窍已经很了解了。在 Marcus 的公寓里,她拿出一对卡住的乐高积木。「爸爸,你能帮我解开这个吗?」她的父亲没有帮她改正创造的义务。词汇和想法就像乐高积木,各部件很容易混搭,并且在世界范围受到热切的尝试。

在 Chloe 厌倦在墙上搭积木之后,一个年龄稍长、经验稍稍丰富的智能系统有机会尝试它:她 5 岁的哥哥 Alexander,很快搭建了一个更高大的乐高建筑。

「他做的很好,」Marcus 如此说。「他没有进行一千万次乐高粘连试验来评估建筑的完整性,他正在采取他所知道的有关物理学的知识,并做出一些推论。」

Marcus 显然很骄傲,不仅对他的子女的能力,而且对他们论证了关于我们如何了解这个世界的理论,以及 AI 如何学习。搭完乐高后,Chloe 和 Alexander 跳进他们父亲的怀抱。当他转起来时,他们高兴地尖叫起来,这为他们提供了另一个机会来调整他们对物理学的直观感官,以及乐趣。

原文链接:http://www.sciencemag.org/news/2018/05/how-researchers-are-teaching-ai-learn-child

本文为机器之心编译,转载请联系本公众号获得授权。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-06-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器之心 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Gary Marcus:在人工智能上取得成功的「叛逆者」
机器之心原创 编辑:吴攀、李亚洲 Gary Marcus 为机器之心 「2017 全球机器智能峰会」的重要演讲嘉宾。 演讲时间:5 月 27 日,14:50-15:10 演讲主题:Control Intelligence and Machine Intelligence 近年来,在计算机计算能力的指数级突破和数据量飞涨这两大因素的推动下,深度学习带来了人工智能的又一波浪潮。图像识别、语音识别、视频理解、自然语言理解、博弈、预测分析、内容生成…… 深度学习不断地在不同的应用领域创造着惊喜。 2016 年
机器之心
2018/05/08
8450
Gary Marcus:在人工智能上取得成功的「叛逆者」
【LeCun vs Marcus巅峰论战】AI学习是否需要类似人类的认知结构?
【新智元导读】人工智能和心理学领域的两位顶尖研究者,纽约大学 Yann LeCun 和 Gary Marcus 就 AI 是否需要类似人类和动物的内置的认知机制,以实现类似人类的智能这一问题,展开了激烈的辩论。辩论的关键在于无监督学习算法最终是否需要内置的认知结构,如果在不需要这类结构的情况下取得成功,那么 LeCun 将被证明是正确的。 一辆由AI技术驱动的自动驾驶汽车,可能需要在虚拟仿真环境中撞到树上5万次,然后才会学到这不是个明智的选择。但是,一只幼年野山羊在陡峭的山坡上学习攀爬,并不需要摔死几百万次
新智元
2018/03/21
8070
【MIT TR 深度】人工智能困境:机器何时才能理解语言
【新智元导读】随着人工智能系统变得越来越高端复杂,我们也愈发难以想象不通过语言,而使用其他方法与计算机沟通。不仅如此,能够简单地与人类交流会让人觉得计算机无比神奇。毕竟,语言是人类理解世界、与世界互动最重要的方法之一,是时候让机器也懂人话了。但是,虽然人工智能领域的科学家进行了各种尝试,但是机器真正理解人话依然是一个难点。本文作者认为,近年来深度学习的发展为解决这一问题带来了希望,但是究竟能不能实现机器与人类在语言上基于理解的沟通,还有待观察。 在韩国首尔的一场格外紧张的围棋比赛的中,史上最佳棋手之一李世石
新智元
2018/03/23
7710
【MIT TR 深度】人工智能困境:机器何时才能理解语言
神经符号系统、因果推理、跨学科交互,李飞飞、Judea Pearl等16名学者共同探讨AI未来
机器之心报道 机器之心编辑部 去年 Gary Marcus 和 Yoshua Bengio 就 AI 技术发展方向展开了一场现场辩论。今年,辩论升级,16 位学者从跨学科角度探讨 AI 未来。 去年,纽约大学心理学和神经科学教授 Gary Marcus 和深度学习先驱、2018 年图灵奖得主 Yoshua Bengio 就 AI 技术的发展方向展开了一场现场辩论。 今年,Gary Marcus 与 Montreal.AI 负责人 Vincent Boucher 举办了第二场辩论。这次辩论共有包括李飞飞、J
机器之心
2023/03/29
7800
神经符号系统、因果推理、跨学科交互,李飞飞、Judea Pearl等16名学者共同探讨AI未来
阿尔法狗击败人类的背后:AI的发展仍存在哪些桎梏,我们又该如何应对?
大数据文摘作品,转载具体要求见文末 作者 | 钱天培 那么,AI的发展前景是否有我们想象的那么乐观呢? 节前大热的AlphaGo与柯洁的大战以人类失败告终,柯洁事后评价说,AlphaGo只是一个冷冰冰的机器人,他不懂得围棋背后的哲理。抛开柯洁为人类尊严的守护,这句话仔细分析其实不无道理。如果我们将19x19的围棋棋盘换为21x21的棋盘,那么AlphaGo此前的训练将全部付之东流。同时,AlphaGo在围棋上的训练也全然无法帮助它在象棋领域取得一丝成就。 从智能语音识别、图
大数据文摘
2018/05/25
8120
德勤 | 思维与机器:人工智能时代的预测之术
【新智元导读】预测对经济和社会极其重要。金融、医疗、政治以及反恐、自然灾害预防等等领域,预测都有着不可替代的作用。然而,此前的研究表明,即便是最顶级的专家,在预测能力上也不一定比随机概率更好。德勤7月26日发表最新报告,认为大数据和AI会从根本上改变人类的预测规则,带来更好的预测能力,从而为企业带来丰厚的利润。文章也强调,人工智能时代下的预测呼唤新的人机合作方式,也更需要“群体智能”。 智能机器时代,人类的判断力 时下,商业和知识体系中的两大主要趋势为在复杂且快速变化的世界中进行预测提供了互补性的洞见。一
新智元
2018/03/28
9910
德勤 | 思维与机器:人工智能时代的预测之术
硅谷新军备竞赛:人工智能
硅谷最新的军备竞赛是建造最好的人造大脑。脸谱(Facebook)、谷歌以及其他技术巨头们都使出浑身解数,希望能将人工智能领域的顶级科学家招致麾下,与此同时,这些公司也砸下重金,这么大手笔的最终目的只有
大数据文摘
2018/05/22
4530
人工智能历史
很高兴和大家一起分享关于人工智能的基础常识性内容,今天我们来聊聊人工智能的过去,从历史的角度看看人工智能的来龙去脉。
用户7886150
2021/01/30
9270
人工智能会重塑哲学吗?
2016年,山西大学科学技术史研究所的厚宇德教授对杨振宁先生做了一个访谈。期间,杨先生比较系统地讲了自己对科学与哲学的关系的一些看法,他的观点是本文讨论人工智能与哲学关系的一个起点。
小腾资讯君
2024/08/12
1830
哪些人工智能电影演得最逼真?
在 1982 年的电影《银翼杀手》的开幕镜头中,一个调查员不断向询问一名为 Leon 的机器人,旨在激发他的情绪反应。在电影中,同情心是区分人类与人工智能(AI)的一些特征之一。 当测试的问题进行到 Leon 的母亲身上时,Leon 站起来,掏出一支枪,并将调查员射杀。 对人类而言,这不是一个令人感到开心的结局,但当好莱坞刻画的人工智能,却很少是这样的结局。 编剧和导演们几十年来一直在银幕上将人工智能放在人类的对立面,而这些情节的科学合理性如何? 我们咨询了一组人工智能专家,并让他们评价 10 部人工智能
顶级程序员
2018/04/26
1.3K0
哪些人工智能电影演得最逼真?
深度学习撞墙了
点击 机器学习算法与Python学习 ,选择加星标 精彩内容不迷路 机器之心编译 早在 2016 年,Hinton 就说过,我们不用再培养放射科医生了。如今几年过去,AI 并没有取代任何一位放射科医生。问题出在哪儿? 近年来,AI 在大数据、大模型的深度学习之路上一路狂奔,但很多核心问题依然没有解决,比如如何让模型具备真正的理解能力。在很多问题上,继续扩大数据和模型规模所带来的收益似乎已经没有那么明显了。 在 Robust.AI 创始人、纽约大学名誉教授 Gary Marcus 看来,这预示着深度学习(
昱良
2022/03/14
3550
远离神经网络这个黑盒,人工智能不止这一条路可走
来源 |《连线》 编译整理 | 量子位 若朴 神经网络横扫硅谷如卷席,各式各样的人工智能(AI)已经潜入各式各样的互联网服务之中。不过就算神经网络已经能轻松的认出猫咪的图片,但仍然有很多不足之处,所以一些人怀疑目前人工智能的模式识别系统,是否是一种先进、可靠的AI发展之路。 无论是Facebook的面部识别、微软的翻译或是Google的搜索,背后都是神经网络通过分析大量数据学会执行任务。人工智能帮助聊天机器人学习谈话的艺术,帮助无人驾驶汽车驶上公路。但是如果没有大量仔细标注的数据,AI并不能理解世界,也
量子位
2018/01/30
1.2K0
远离神经网络这个黑盒,人工智能不止这一条路可走
【深度】Nature:我们能打开人工智能的“黑箱”吗?
编者按:人工智能无处不在。但是在科学家信任人工智能之前,他们首先应该了解这些人工智能机器是如何运作的,这也就是文中所提到的“黑箱”问题。在控制论中,通常把所不知的区域或系统称为“黑箱”,研究者们通过观
AI科技评论
2018/03/08
1.3K0
【深度】Nature:我们能打开人工智能的“黑箱”吗?
机器学习,数据科学,人工智能,深度学习和统计有何异同
在本文中,我阐述了数据科学家的各种角色,以及数据科学如何与机器学习,深度学习,人工智能,统计学,物联网,运筹学和应用数学等相关领域进行比较和重叠。 由于数据科学是一门广泛的学科,我首先描述在任何商业环境中可能遇到的不同类型的数据科学家:您甚至可能发现自己是一名数据科学家,而不知道它。 与任何科学学科一样,数据科学家可以借用相关学科的技术,尽管我们已经开发了自己的工具库,特别是技术和算法,以自动方式处理非常大的非结构化数据集,即使没有人工交互,也可以实时执行交易 或者做出预测。
架构师研究会
2019/06/02
7830
人工智能革命:为什么深度学习会突然改变你的生活?(上)
编者按:过去4年,大家无疑已经注意到大范围的日常技术在质量方面已经取得了巨大突破。这背后基本上都有深度学习的影子。到底什么是深度学习?深度学习是如何发展到今天的?这一路上它都经历了哪些关键时刻?Rog
小莹莹
2018/04/20
7700
人工智能革命:为什么深度学习会突然改变你的生活?(上)
人工智能有大事发生,LeCun也转型了
选自noemamag 作者:Gary Marcus 机器之心编译 机器之心编辑部 「深度学习撞墙」激辩到第 N 回合,Gary Marcus 回怼 LeCun:你们对我说的话有误解。 符号处理是逻辑学、数学和计算机科学中常见的过程,它将思维视为代数操作。近 70 年来,人工智能领域最根本的争论就是人工智能系统应该建立在符号处理的基础上还是类似于人脑的神经系统之上。 实际上还有作为中间立场的第三种可能——混合模型。通过将神经网络的数据驱动学习与符号处理的强大抽象能力相结合,混合模型试图获得两全其美的能力。这
机器之心
2022/08/25
3670
人工智能有大事发生,LeCun也转型了
人工智能和机器学习有何不同
在过去几年中,人工智能和机器学习这两个术语已经开始在技术新闻和网站中频繁出现。通常这两者被用作同义词,但许多专家认为它们具有微妙但真正的差异。
架构师研究会
2019/06/02
4960
人工智能(AI)自然语言理解的问题
在韩国首尔举行的围棋赛的中途,世界级顶尖围棋选手李世石和谷歌人工智能阿尔法狗的较量中,人工智能阿尔法狗走出了超越人类令人不安的神秘的一步棋。
魔法少女伊莉雅
2018/02/24
1.7K0
人工智能(AI)自然语言理解的问题
在大家热议Vicarious AI那篇Science论文时,我们和这家公司的CTO聊了聊(回应LeCun批判)
机器之心原创 作者:彭君韬(Tony) 上周,Vicarious AI 发表在 Science 上的一篇论文引发了业内热议,有褒有贬,甚至有媒体挖出了 Yann LeCun 2013 年对 Vicar
机器之心
2018/05/10
9560
困扰人工智能50多年的常识问题,是否迎来“破局”?
一堆木柴加上一根火柴,能得到什么?人类会自然而然地得出答案:火。然而对于机器而言,这并不容易,因而它们缺乏这种常识推理能力。
AI科技评论
2020/05/14
6420
困扰人工智能50多年的常识问题,是否迎来“破局”?
推荐阅读
相关推荐
Gary Marcus:在人工智能上取得成功的「叛逆者」
更多 >
领券
一站式MCP教程库,解锁AI应用新玩法
涵盖代码开发、场景应用、自动测试全流程,助你从零构建专属AI助手
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档