前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >数据挖掘模型生命周期管理

数据挖掘模型生命周期管理

作者头像
机器学习AI算法工程
发布2018-03-09 11:59:18
1.8K0
发布2018-03-09 11:59:18
举报
文章被收录于专栏:机器学习AI算法工程

为成功地利用数据挖掘模型,我们需要从开发阶段直至生产环境对模型进行全面跟踪管理与评估。挖掘模型生命周期过程是由以下阶段组成的高效交替过程。

  • 确定商业目标

最初的阶段集中在理解项目目标和从业务的角度理解需求,同时转化为数据挖掘问题的定义,完成目标的初步计划。确定所需模型以及模型的应用类型,制定策略保证模型部署后,业务单位了解模型的使用方法。

典型模型包括用于客户行为、风险管理和信用评分的预测建模模型。应用领域包括客户保有、信贷发放、交易验证、欺诈检测和促销等。这些因素推动数据采集和模型开发过程。

  • 数据理解

数据理解阶段从初始的数据收集开始,通过一些活动的处理,目的是熟悉数据,检查数据的质量,初步发现数据的特征,或是探测引起兴趣的样本子集去构建隐含信息的假设。

影响数据质量的几个主要问题包括:缺失值、不合理值、不同数据源的不一致、异常值。

  • 数据准备

数据准备(预处理)阶段包括从未处理数据中构造最终数据集的所有活动。这些数据将作为模型工具的输入值。这个阶段的任务有时一个能执行多次,没有任何规定的顺序。任务包括表、记录和属性的选择,以及为模型工具转换和清洗数据。

现实中的数据通常是不完整的、不一致的、含噪声,污染数据的普遍存在导致了数据清理的必要性,所谓“垃圾进垃圾出”。形成污染数据的原因包括:滥用缩写词、数据输入错误、不同的惯用语、重复记录、缺失值、不同的计量单位等。

  • 建立模型

选择和应用不同的模型技术,调整模型参数到最佳值。一般,有些技术可以解决一类相同的数据挖掘问题。有些技术在数据形成上有特殊要求,因此需要经常跳回到数据准备阶段。

这个过程涉及采用挖掘统计和虚拟化技术、变量转换、过滤异常、数据替换、细分、聚合、预测建模运算和模型验证等。

  • 模型评估

在最后部署模型之前,重要的事情是较彻底地评估模型。检查构造模型的步骤,确保模型可以达成业务目标。这个阶段的关键目的是确定是否有重要业务问题没有被充分的考虑。在这个阶段结束后,关于数据挖掘结果使用的一个决定必须达成共识。

随着越来越多地采用分析方法支持业务决策,预测模型已被视为企业的重要智能资产。每一种模型都是重要的,对企业利润水平、法规遵从和规避法律/经济风险具有重要作用。这种情况促使越来越多的企业将模型验证作为常规业务流程。

  • 结果发布

通常,模型的创建不是项目的结束。模型的作用是从数据中找到知识,获得的知识需要便于用户使用的方式重新组织和展现。根据需求,这个阶段可以产生简单的报告,或是实现一个比较复杂的、可重复的数据挖掘过程。在很多案例中,这个阶段是由客户而不是数据分析人员承担实施的工作。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2014-07-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 大数据挖掘DT数据分析 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
腾讯云 BI
腾讯云 BI(Business Intelligence,BI)提供从数据源接入、数据建模到数据可视化分析全流程的BI能力,帮助经营者快速获取决策数据依据。系统采用敏捷自助式设计,使用者仅需通过简单拖拽即可完成原本复杂的报表开发过程,并支持报表的分享、推送等企业协作场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档