import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn.functional as F #nn不好使时,在这里找激活函数
# device config
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# hyper parameters
input_size = 784 # 28x28
hidden_size = 100
num_classes = 10
batch_size = 100
learning_rate = 0.001
num_epochs = 2
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(
root='./data', train=True, download=True, transform=transform)
test_dataset = torchvision.datasets.CIFAR10(
root='./data', www.laipuhuo.com train=False, download=True, transform=transform)
train_loader = torch.utils. data.DataLoader(
dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset, batch_size=batch_size, shuffle=False)
print('每份100个,被分成多少份:', len(test_loader))
classes = ('plane', 'car', 'bird', 'cat', 'deer',
'dog', 'frog', 'horse', 'ship', 'truck')
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet,self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120) #这个在forward里解释
self.fc2 = nn.www.laipuhuo.com Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x))) #这里x已经变成 torch.Size([4, 16, 5, 5])
# print("两次卷积两次池化后的x.shape:",x.shape)
x = x.view(-1,16*5*5)#这里的16*5*5就是x的后面3个维度相乘
x = F.relu(self.fc1(x)) #fc1定义时,inputx已经是16*5*5了
x = F.relu(self.fc2(x))
x= self.fc3(x)
return x
model = ConvNet().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# origin shape:[www.laipuhuo.com 4,3,32,32]=4,3,1024
# input layer: 3 input channels, 6 output channels, 5 kernel size
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 2000 == 0:
print(
f'Epoch www.laipuhuo.com [{epoch+1}/{num_epochs}], Step [{i+1}/{n_total_steps}], Loss: {loss.item():.4f}')
print('Finished Training')
# test
with torch.no_grad():
n_correct = 0
n_samples = 0
n_class_correct = [0 for i in range(10)] #生成 10 个 0 的列表
n_class_samples = [0 for i in range(10)]
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
print('test-images.shape:', images.shape)
outputs = model(images)
# max returns(value ,index)
_, predicted = torch.max(outputs, 1)
n_samples +=www.laipuhuo.com labels.size(0)
n_correct += (predicted == labels).sum().item()
for i in range(batch_size):
label = labels[i]
# print("label:",label) #这里存的是 0~9的数字 输出就是这样的 label: tensor(2) predicted[i]也是这样的数
pred = predicted[i]
if (label == pred):
n_class_correct[label] += 1
n_class_samples[label] += 1
acc = 100.0*n_correct/n_samples # 计算正确率
print(f'accuracy =www.laipuhuo.com {acc}')
for i in range(10):
acc = 100.0*n_class_correct[i]/n_class_samples[i]
print(f'Accuracy of {classes[i]}: {acc} %')
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。