前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >分布式系统中的CAP原理

分布式系统中的CAP原理

作者头像
程序员波特
发布2024-01-19 10:15:49
1370
发布2024-01-19 10:15:49
举报
文章被收录于专栏:魔法书

分布式系统中的CAP原理

本文已收录至我的个人网站:程序员波特,主要记录Java相关技术系列教程,共享电子书、Java学习路线、视频教程、简历模板和面试题等学习资源,让想要学习的你,不再迷茫。

简介

在分布式系统中,我们经常听到CAP原理这个词,它是什么意思呢?其实和C、A、P这3个字母有关,C、A、P分别是这3个词的首字母。下面我们就看- -下这3个词分别是什么意思?

  • C- Consistent, -致性。具体是指,操作成功以后,所有的节点,在同一时间,看到的数据都是完全一致的。 所以,致性,说的就是数据一致性 。
  • A- Availability, 可用性。指服务一致可用,在规定的时间内完成响应。
  • P- Partition tolerance;分区容错性。指分布式系统在遇到某节点或网络分区故障的时候,仍然能够对外提供服务。

CAP原理指出,这3个指标不能同时满足,最多只能满足其中的两个。

详解

我们之所以使用分布式系统,就是为了在某个节点不可用的情况下,整个服务对外还是可用的,这正是满足P(分区容错性)。如果我们的服务不满足P(分区容错性),那么我们的系统也就不是分布式系统了,所以,在分布式系统中,P(分布容错性)总是成立的。那么,A(可用性)和C(一致性)能不能同时满足呢?我们看一下下面的图例。

A和B是两个数据节点,A向B同步数据,并且作为一个整体对外提供服务。由于我们的系统保证了P(分区容错性),那么A和B的同步,我们允许出现故障。接下来我们再保证A(可用性),也就是说A和B同步出现问题时,客户端还能够访问我们的系统,那么客户端既可能访问A也可能访问B,这时,A和B的数据是不一致的,所以C(一致性)不能满足。

如果我们满足C(一致性),也就是说客户端无论访问A还是访问B,得到的结果都是一样的,那么现在A和B的数据不一致,需要等到A和B的数据一致以后,也就是同步恢复以后,才可对外提供服务。这样我们虽然满足了C(一致性),却不能满足A(可用性)。

所以,我们的系统在满足P(分区容错性)的同时,只能在A(可用性)和C(一致性)当中选择一个不能CAP同时满足。我们的分布式系统只能是AP或者CP。

ACID与BASE

在关系型数据库中,最大的特点就是事务处理,也就是ACID。ACID是事务处理的4个特性。

  • A - Atomicity (原子性),事务中的操作要么都做,要么都不做。
  • C -Consistency (- 致性),系统必须始终处在强一致状态
  • I - Isolation (隔离性),-个事务的执行不能被其他事务所干扰。
  • D- Durability (持久性),-个已提交的事务对数据库中数据的改变是永久性的。

ACID强调的是强一致性,要么全做,要么全不做,所有的用户看到的都是一致的数据 。传统的数据库都有ACID特性,它们在CAP原理中,保证的是CA。但是在分布式系统大行其道的今天,满足CA特性的系统很难生存下去。ACID也逐渐的向BASE转换。那么什么是BASE呢?

BASE是Basically Available (基本可用),Soft-state (软状态),Eve ntually consistent(最终一致)的缩写。

  • Basically Available,基本可用是指分布式系统在出现故障的时候,允许损失部分可用性,即保证核心可用。电商大促时,为了应对访问量激增,部分用户可能会被引导到降级页面,服务层也可能只提供降级服务。这就是损失部分可用性的体现。
  • 软状态(Soft State),软状态是指允许系统存在中间状态,而该中间状态不会影响系统整体可用性。分布式存储中一般一份数据至少会有两到三个副本,允许不同节点间副本同步的延时就是软状态的体现。mysql replication的异步复制也是一种体现。
  • 最终一致性(Eventual Consistency),最终一致性是指系统中的所有数据副本经过一定时间后,最终能够达到一致的状态。弱一致性和强一致性相反,最终一致性是弱一致性的一种特殊情况。

BASE模型是传统ACID模型的反面,不同与ACID,BASE强调牺牲高一致性,从而获得可用性,数据允许在一段时间内的不一致,只要保证最终一致就可以了。

在分布式事务的解决方案中,它们都是依赖了ACID或者BASE的模型而实现的。像基于XA协议的两阶段提交和实物补偿机制就是基于ACID实现的。而基于本地消息表和基于MQ的最终一致方案都是通过BASE原理实现的。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2024-01-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 分布式系统中的CAP原理
    • 简介
      • 详解
      • ACID与BASE
      相关产品与服务
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档