Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >在OpenCV中基于深度学习的边缘检测

在OpenCV中基于深度学习的边缘检测

原创
作者头像
一点人工一点智能
发布于 2023-02-11 08:57:14
发布于 2023-02-11 08:57:14
1.6K01
代码可运行
举报
运行总次数:1
代码可运行

转载自丨3d tof 原文地址:在OpenCV中基于深度学习的边缘检测 推荐阅读:普通段位玩家的CV算法岗上岸之路(2023届秋招)

在这篇文章中,我们将学习如何在OpenCV中使用基于深度学习的边缘检测,它比目前流行的canny边缘检测器更精确。边缘检测在许多用例中是有用的,如视觉显著性检测,目标检测,跟踪和运动分析,结构从运动,3D重建,自动驾驶,图像到文本分析等等。

01  什么是边缘检测?

边缘检测是计算机视觉中一个非常古老的问题,它涉及到检测图像中的边缘来确定目标的边界,从而分离感兴趣的目标。最流行的边缘检测技术之一是Canny边缘检测,它已经成为大多数计算机视觉研究人员和实践者的首选方法。让我们快速看一下Canny边缘检测。

02  Canny边缘检测算法

1983年,John Canny在麻省理工学院发明了Canny边缘检测。它将边缘检测视为一个信号处理问题。其核心思想是,如果你观察图像中每个像素的强度变化,它在边缘的时候非常高。

在下面这张简单的图片中,强度变化只发生在边界上。所以,你可以很容易地通过观察像素强度的变化来识别边缘。

现在,看下这张图片。强度不是恒定的,但强度的变化率在边缘处最高。(微积分复习:变化率可以用一阶导数(梯度)来计算。)

Canny边缘检测器通过4步来识别边缘:

  1. 去噪:因为这种方法依赖于强度的突然变化,如果图像有很多随机噪声,那么会将噪声作为边缘。所以,使用5×5的高斯滤波器平滑你的图像是一个非常好的主意。
  2. 梯度计算:下一步,我们计算图像中每个像素的强度的梯度(强度变化率)。我们也计算梯度的方向。

梯度方向垂直于边缘,它被映射到四个方向中的一个(水平、垂直和两个对角线方向)。

  1. 非极大值抑制:现在,我们想删除不是边缘的像素(设置它们的值为0)。你可能会说,我们可以简单地选取梯度值最高的像素,这些就是我们的边。然而,在真实的图像中,梯度不是简单地在只一个像素处达到峰值,而是在临近边缘的像素处都非常高。因此我们在梯度方向上取3×3附近的局部最大值。
  1. 迟滞阈值化:在下一步中,我们需要决定一个梯度的阈值,低于这个阈值所有的像素都将被抑制(设置为0)。而Canny边缘检测器则采用迟滞阈值法。迟滞阈值法是一种非常简单而有效的方法。我们使用两个阈值来代替只用一个阈值:高阈值 = 选择一个非常高的值,这样任何梯度值高于这个值的像素都肯定是一个边缘。低阈值 = 选择一个非常低的值,任何梯度值低于该值的像素绝对不是边缘。在这两个阈值之间有梯度的像素会被检查,如果它们和边缘相连,就会留下,否则就会去掉。

迟滞阈值化
迟滞阈值化

03  Canny 边缘检测的问题

由于Canny边缘检测器只关注局部变化,没有语义(理解图像的内容)理解,精度有限(很多时候是这样)。

Canny边缘检测器在这种情况下会失败,因为没有理解图像的上下文

语义理解对于边缘检测是至关重要的,这就是为什么使用机器学习或深度学习的基于学习的检测器比canny边缘检测器产生更好的结果。

04  OpenCV中基于深度学习的边缘检测

OpenCV在其全新的DNN模块中集成了基于深度学习的边缘检测技术。你需要OpenCV 3.4.3或更高版本。这种技术被称为整体嵌套边缘检测或HED,是一种基于学习的端到端边缘检测系统,使用修剪过的类似vgg的卷积神经网络进行图像到图像的预测任务。

HED利用了中间层的输出。之前的层的输出称为side output,将所有5个卷积层的输出进行融合,生成最终的预测。由于在每一层生成的特征图大小不同,它可以有效地以不同的尺度查看图像。

网络结构:整体嵌套边缘检测
网络结构:整体嵌套边缘检测

HED方法不仅比其他基于深度学习的方法更准确,而且速度也比其他方法快得多。这就是为什么OpenCV决定将其集成到新的DNN模块中。以下是这篇论文的结果:

05  在OpenCV中训练深度学习边缘检测的代码

OpenCV使用的预训练模型已经在Caffe框架中训练过了,可以这样加载:

代码语言:python
代码运行次数:1
运行
AI代码解释
复制
sh download_pretrained.sh

网络中有一个crop层,默认是没有实现的,所以我们需要自己实现一下。

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
class CropLayer(object):
    def __init__(self, params, blobs):
        self.xstart = 0
        self.xend = 0
        self.ystart = 0
        self.yend = 0

    # Our layer receives two inputs. We need to crop the first input blob
    # to match a shape of the second one (keeping batch size and number of channels)
    def getMemoryShapes(self, inputs):
        inputShape, targetShape = inputs[0], inputs[1]
        batchSize, numChannels = inputShape[0], inputShape[1]
        height, width = targetShape[2], targetShape[3]

        self.ystart = (inputShape[2] - targetShape[2]) // 2
        self.xstart = (inputShape[3] - targetShape[3]) // 2
        self.yend = self.ystart + height
        self.xend = self.xstart + width

        return [[batchSize, numChannels, height, width]]

    def forward(self, inputs):
        return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]]

现在,我们可以重载这个类,只需用一行代码注册该层。

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
cv.dnn_registerLayer('Crop', CropLayer)

现在,我们准备构建网络图并加载权重,这可以通过OpenCV的dnn.readNe函数。

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
net = cv.dnn.readNet(args.prototxt, args.caffemodel)

现在,下一步是批量加载图像,并通过网络运行它们。为此,我们使用cv2.dnn.blobFromImage方法。该方法从输入图像中创建四维blob。

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
blob = cv.dnn.blobFromImage(image, scalefactor, size, mean, swapRB, crop)

其中:

image:是我们想要发送给神经网络进行推理的输入图像。

scalefactor:图像缩放常数,很多时候我们需要把uint8的图像除以255,这样所有的像素都在0到1之间。默认值是1.0,不缩放。

size:输出图像的空间大小。它将等于后续神经网络作为blobFromImage输出所需的输入大小。

swapRB:布尔值,表示我们是否想在3通道图像中交换第一个和最后一个通道。OpenCV默认图像为BGR格式,但如果我们想将此顺序转换为RGB,我们可以将此标志设置为True,这也是默认值。

mean:为了进行归一化,有时我们计算训练数据集上的平均像素值,并在训练过程中从每幅图像中减去它。如果我们在训练中做均值减法,那么我们必须在推理中应用它。这个平均值是一个对应于R, G, B通道的元组。例如Imagenet数据集的均值是R=103.93, G=116.77, B=123.68。如果我们使用swapRB=False,那么这个顺序将是(B, G, R)。

crop:布尔标志,表示我们是否想居中裁剪图像。如果设置为True,则从中心裁剪输入图像时,较小的尺寸等于相应的尺寸,而其他尺寸等于或大于该尺寸。然而,如果我们将其设置为False,它将保留长宽比,只是将其调整为固定尺寸大小。

在我们这个场景下:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(args.width, args.height),                 
                           mean=(104.00698793, 116.66876762, 122.67891434), swapRB=False,                 
                           crop=False)

现在,我们只需要调用一下前向方法。

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
net.setInput(inp)
out = net.forward()
out = out[0, 0]
out = cv.resize(out, (frame.shape[1], frame.shape[0]))
out = 255 * out
out = out.astype(np.uint8)
out=cv.cvtColor(out,cv.COLOR_GRAY2BGR)
con=np.concatenate((frame,out),axis=1)
cv.imshow(kWinName,con)

结果:

中间的图像是人工标注的图像,右边是HED的结果
中间的图像是人工标注的图像,右边是HED的结果
中间的图像是人工标注的图像,右边是HED的结果
中间的图像是人工标注的图像,右边是HED的结果

1. 书籍推荐-《基于深度学习的计算机视觉》

2. 一文梳理水下目标检测方法汇总

3. 书籍推荐-《视频跟踪:理论与实践》

4. 书籍推荐-《基于Python和OpenGL的图形框架开发》

5. BEVGen:从鸟瞰图布局生成环视街景图像

6. 一文尽览 | 轨迹预测二十年发展全面回顾!

7. 2022年最值得关注的十篇论文,你都看了吗?

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
OpenCV4 调用HED边缘检测算法
点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 HED算法介绍 图像边缘检测是图像处理与计算机视觉领域最基础也是最重要的任务之一,早期的Canny边缘检测到现在还在使用,但是Canny边缘检测过于依赖人工阈值的设定,无法在通用场景下工作,如何找到一个在自然场景下可以正确工作的边缘检测器,答案是使用CNN。2015年的时候有人提出了基于卷积神经网络的边缘检测算法HED全称为《Holistically-Nested Edge Detection》, 先看一下HED与Ca
OpenCV学堂
2022/08/29
1.4K1
OpenCV4 调用HED边缘检测算法
OpenCV4中调用HED边缘检测算法
图像边缘检测是图像处理与计算机视觉领域最基础也是最重要的任务之一,早期的Canny边缘检测到现在还在使用,但是Canny边缘检测过于依赖人工阈值的设定,无法在通用场景下工作,如何找到一个在自然场景下可以正确工作的边缘检测器,答案是使用CNN。2015年的时候有人提出了基于卷积神经网络的边缘检测算法HED全称为《Holistically-Nested Edge Detection》, 先看一下HED与Canny的效果对比:
OpenCV学堂
2019/06/14
4.4K1
OpenCV4中调用HED边缘检测算法
OpenCV实战:从图像处理到深度学习的全面指南
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它由一系列的C函数和少量C++类构成,同时提供Python、Java和MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
TechLead
2023/10/21
9220
OpenCV实战:从图像处理到深度学习的全面指南
使用OpenCV+Python进行Canny边缘检测
如果我们环顾房间,我们会看到大量的物体,每一个都很容易区分,并有自己独特的边缘。我们区分物体的先天能力部分来自于我们的视觉系统检测边缘的能力。检测边缘是视觉的一项基本任务,尽管没有它我们不会完全失明,但以前区分物体的简单任务将变得非常具有挑战性。电脑也是类似的,计算机要检测物体,首先需要识别边缘。
小白学视觉
2022/02/11
3K0
使用OpenCV+Python进行Canny边缘检测
Task06 边缘检测
如上图所示,上图的第一幅图表示一张数字图片,我们对水平红线处进行求导,便可得到上图二中的关系,可以看到在边缘处有着较大的跳变。但是,导数也会受到噪声的影响,因此建议在求导数之前先对图像进行平滑处理(上图三)。
致Great
2020/05/08
5250
基于OpenCV的图像梯度与边缘检测!
严格的说,梯度计算需要求导数。但是图像梯度的计算,是通过计算像素值的差得到梯度的近似值。图像梯度表示的是图像变化的速度,反映了图像的边缘信息。
Datawhale
2020/07/09
4.7K0
基于OpenCV的图像梯度与边缘检测!
OpenCV 边缘检测
Canny 边缘检测算子,其算法步骤大体如下: 1) 用高斯滤波器对输入图像做平滑处理 (大小为 5x5 的高斯核)
AI异构
2020/07/29
1K0
OpenCV 边缘检测
图像边缘检测--OpenCV之cvCanny函数
void cvCanny( const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size=3 ); image单通道输入图像.edges单通道存储边缘的输出图像threshold1第一个阈值threshold2第二个阈值aperture_sizeSobel 算子内核大小 (见 cvSobel).
流川疯
2022/12/02
6280
图像边缘检测--OpenCV之cvCanny函数
OpenCV边缘检测与视频读写
边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。边缘的表现形式:
@小森
2024/03/15
1260
OpenCV边缘检测与视频读写
opencv(4.5.3)-python(十六)--边缘检测
Canny边缘检测是一种流行的边缘检测算法。它是由John F. Canny在2006年开发的。
用户9875047
2022/12/07
3900
opencv(4.5.3)-python(十六)--边缘检测
CV学习笔记(十四):边缘检测
在这一篇文章里我们将去学习在计算机视觉中边缘检测的知识,并且去使用OpenCV来实现Canny边缘检测算法。
云时之间
2020/03/27
2.2K0
OpenCV:边缘检测。
其中OpenCV提供了许多边缘检测滤波函数,这些滤波函数都会将非边缘区域转为黑色,将边缘区域转为白色或其他饱和的颜色。
小F
2020/10/09
1.8K0
OpenCV:边缘检测。
CV学习笔记(十四):边缘检测
在这一篇文章里我们将去学习在计算机视觉中边缘检测的知识,并且去使用OpenCV来实现Canny边缘检测算法。
云时之间
2020/04/01
5260
CV学习笔记(十四):边缘检测
OpenCV4.X - DNN模块 Python APIs
原文: OpenCV4.X - DNN模块 Python APIs - AIUAI
AIHGF
2019/04/01
3.5K0
OpenCV4.X - DNN模块 Python APIs
Canny边缘检测算法(基于OpenCV的Java实现)
Canny边缘检测于1986年由JOHN CANNY首次在论文《A Computational Approach to Edge Detection》中提出,就此拉开了Canny边缘检测算法的序幕。
gyro永不抽风
2021/05/21
1.4K0
关于OpenCV for Python入门-DNN模块实现人脸检测
OpenCV在OpenCV增加了DNN模块,DNN模块可以加载预先训练好的Caffe/tensorflow等模型数据,基本支持所有主流的深度学习框架训练生成与导出模型数据加载。
python与大数据分析
2022/04/02
1.2K0
关于OpenCV for Python入门-DNN模块实现人脸检测
边缘检测算子Canny原理概述并利用OpenCV的库函数Canny()对图像进行边缘检测[通俗易懂]
图像边缘检测的概念和大概原理可以参考我的另一篇博文,链接如下: https://blog.csdn.net/wenhao_ir/article/details/51743382
全栈程序员站长
2022/09/02
2.6K0
【python-opencv】canny边缘检测
Canny Edge Detection是一种流行的边缘检测算法。它由John F. Canny发明,这是一个多阶段算法,我们将经历每个阶段。
西西嘛呦
2020/08/26
1.2K0
【python-opencv】canny边缘检测
OpenCV 安卓编程示例:1~6 全
在本章中,我将逐步介绍如何开始使用 OpenCV 开发具有视觉感知的 Android 应用。
ApacheCN_飞龙
2023/04/27
6K0
OpenCV 安卓编程示例:1~6 全
【图像处理与OpenCV:技术栈、应用和实现】
图像处理作为计算机视觉领域的重要分支,在各个行业中扮演着越来越重要的角色。从医疗诊断、自动驾驶、安防监控到人工智能领域的图像识别,图像处理无处不在。随着计算机硬件性能的提升和深度学习的快速发展,图像处理技术也在不断演进,尤其是OpenCV(Open Source Computer Vision Library)成为了开发者们在图像处理领域的首选工具之一。本文将详细介绍OpenCV的基本功能、常见应用及技术实现,帮助读者深入理解图像处理的核心技术。
机器学习司猫白
2025/03/04
1700
相关推荐
OpenCV4 调用HED边缘检测算法
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验