前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >使用TensorFlow训练图像分类模型的指南

使用TensorFlow训练图像分类模型的指南

原创
作者头像
一点人工一点智能
发布2023-01-15 09:33:59
1.1K02
代码可运行
发布2023-01-15 09:33:59
举报
文章被收录于专栏:一点人工一点智能
运行总次数:2
代码可运行

转载自:51CTO技术栈

原文地址:使用TensorFlow训练图像分类模型的指南

众所周知,人类在很小的时候就学会了识别和标记自己所看到的事物。如今,随着机器学习和深度学习算法的不断迭代,计算机已经能够以非常高的精度,对捕获到的图像进行大规模的分类了。目前,此类先进算法的应用场景已经涵括到了包括:解读肺部扫描影像是否健康,通过移动设备进行面部识别,以及为零售商区分不同的消费对象类型等领域。

下面,我将和您共同探讨计算机视觉(Computer Vision)的一种应用——图像分类,并逐步展示如何使用TensorFlow,在小型图像数据集上进行模型的训练。

01  数据集和目标

在本示例中,我们将使用MNIST数据集的从0到9的数字图像。其形态如下图所示:

我们训练该模型的目的是为了将图像分类到其各自的标签下,即:它们在上图中各自对应的数字处。通常,深度神经网络架构会提供一个输入、一个输出、两个隐藏层(Hidden Layers)和一个用于训练模型的Dropout层。而CNN或卷积神经网络(Convolutional Neural Network)是识别较大图像的首选,它能够在减少输入量的同时,捕获到相关的信息。

02  准备工作

首先,让我们通过TensorFlow、to_categorical(用于将数字类的值转换为其他类别)、Sequential、Flatten、Dense、以及用于构建神经网络架构的 Dropout,来导入所有相关的代码库。您可能会对此处提及的部分代码库略感陌生。我会在下文中对它们进行详细的解释。

03  超参数

我将通过如下方面,来选择正确的超参数集:

  • 首先,让我们定义一些超参数作为起点。后续,您可以针对不同的需求,对其进行调整。在此,我选择了128作为较小的批量尺寸(batch size)。其实,批量尺寸可以取任何值,但是2的幂次方大小往往能够提高内存的效率,因此应作为首选。值得注意的是,在决定合适的批量尺寸时,其背后的主要参考依据是:过小的批量尺寸会使收敛过于繁琐,而过大的批量尺寸则可能并不适合您的计算机内存。
  • 让我们将epoch(训练集中每一个样本都参与一次训练)的数量保持为50 ,以实现对模型的快速训练。epoch数值越低,越适合小而简单的数据集。
  • 接着,您需要添加隐藏层。在此,我为每个隐藏层都保留了128个神经元。当然,你也可以用64和32个神经元进行测试。就本例而言,像MINST这样的简单数据集,我并不建议使用较高的数值。
  • 您可以尝试不同的学习率(learning rate),例如0.01、0.05和0.1。在本例中,我将其保持为0.01。
  • 对于其他超参数,我将衰减步骤(decay steps)和衰减率(decay rate)分别选择为2000和0.9。而随着训练的进行,它们可以被用来降低学习率。
  • 在此,我选择Adamax作为优化器。当然,您也可以选择诸如Adam、RMSProp、SGD等其他优化器。

代码语言:python
代码运行次数:2
复制
import tensorflow as tf
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Dropout
params = {
    'dropout': 0.25,
    'batch-size': 128,
    'epochs': 50,
    'layer-1-size': 128,
    'layer-2-size': 128,
    'initial-lr': 0.01,
    'decay-steps': 2000,
    'decay-rate': 0.9,
    'optimizer': 'adamax'
}
mnist = tf.keras.datasets.mnist  
num_class = 10
# split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# reshape and normalize the data
x_train = x_train.reshape(60000, 784).astype("float32")/255
x_test = x_test.reshape(10000, 784).astype("float32")/255
# convert class vectors to binary class matrices
y_train = to_categorical(y_train, num_class)
y_test = to_categorical(y_test, num_class)

04  创建训练和测试集

由于TensorFlow库也包括了MNIST数据集,因此您可以通过调用对象上的 datasets.mnist ,再调用load_data() 的方法,来分别获取训练(60,000个样本)和测试(10,000个样本)的数据集。

接着,您需要对训练和测试的图像进行整形和归一化。其中,归一化会将图像的像素强度限制在0和1之间。

最后,我们使用之前已导入的to_categorical 方法,将训练和测试标签转换为已分类标签。这对于向TensorFlow框架传达输出的标签(即:0到9)为类(class),而不是数字类型,是非常重要的。

05  设计神经网络架构

下面,让我们来了解如何在细节上设计神经网络架构。

我们通过添加Flatten ,将2D图像矩阵转换为向量,以定义DNN(深度神经网络)的结构。输入的神经元在此处对应向量中的数字。

接着,我使用Dense() 方法,添加两个隐藏的密集层,并从之前已定义的“params”字典中提取各项超参数。我们可以将“relu”(Rectified Linear Unit)作为这些层的激活函数。它是神经网络隐藏层中最常用的激活函数之一。

然后,我们使用Dropout方法添加Dropout层。它将被用于在训练神经网络时,避免出现过拟合(overfitting)。毕竟,过度拟合模型倾向于准确地记住训练集,并且无法泛化那些不可见(unseen)的数据集。

输出层是我们网络中的最后一层,它是使用Dense() 方法来定义的。需要注意的是,输出层有10个神经元,这对应于类(数字)的数量。

代码语言:python
代码运行次数:0
复制
# Model Definition
# Get parameters from logged hyperparameters
model = Sequential([
Flatten(input_shape=(784, )),
Dense(params('layer-1-size'), activation='relu'),
Dense(params('layer-2-size'), activation='relu'),
Dropout(params('dropout')),
Dense(10)
])
lr_schedule =
tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=experiment.get_parameter('initial-lr'),
decay_steps=experiment.get_parameter('decay-steps'),
decay_rate=experiment.get_parameter('decay-rate')
)
loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adamax',
loss=loss_fn,
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=experiment.get_parameter('batch-size'),
epochs=experiment.get_parameter('epochs'),
validation_data=(x_test, y_test),)
score = model.evaluate(x_test, y_test)
# Log Model
model.save('tf-mnist-comet.h5')

06  训练

至此,我们已经定义好了架构。下面让我们用给定的训练数据,来编译和训练神经网络。

  • 首先,我们以初始学习率、衰减步骤和衰减率作为参数,使用ExponentialDecay(指数衰减学习率)来定义学习率计划。
  • 其次,将损失函数定义为CategoricalCrossentropy(用于多类式分类)。
  • 接着,通过将优化器 (即:adamax)、损失函数、以及各项指标(由于所有类都同等重要、且均匀分布,因此我选择了准确性)作为参数,来编译模型。
  • 然后,我们通过使用x_train、y_train、batch_size、epochs和validation_data去调用一个拟合方法,并拟合出模型。
  • 同时,我们调用模型对象的评估方法,以获得模型在不可见数据集上的表现分数。
  • 最后,您可以使用在模型对象上调用的save方法,保存要在生产环境中部署的模型对象。

07  小结

综上所述,我们讨论了为图像分类任务,训练深度神经网络的一些入门级的知识。您可以将其作为熟悉使用神经网络,进行图像分类的一个起点。据此,您可了解到该如何选择正确的参数集、以及架构背后的思考逻辑。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 01  数据集和目标
  • 02  准备工作
  • 03  超参数
  • 04  创建训练和测试集
  • 05  设计神经网络架构
  • 06  训练
  • 07  小结
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档