点云配准的目标是根据原始点云和目标点云,通过配准求出变换矩阵,即旋转矩阵R和平移矩阵T,并计算误差,来比较匹配结果。主要有以下几种比较
配准的一般步骤:
注意:配准中,由于不同点云数据集的特性,需要提取不同关键点。
demo展示
粗配准
ICP迭代配准
汇总ICP资源
1,FilterReg: Robust and Efficient Probabilistic Point-Set Registration using Gaussian Filter and Twist pdf:Parameterization pdf:https://arxiv.org/pdf/1811.10136.pdf
2,Robust Point Cloud Registration Using Iterative Probabilistic Data Associations ("Robust ICP") code: https://github.com/ethz-asl/robust_point_cloud_reg
3,Efficient Global Point-cloud registration code:https://github.com/nmellado/Super4PCS
4,Scale Ratio ICP for 3D Point Clouds with Different Scales
code:https://github.com/linbaowei/ScaleRatioICP
5,improved ICP for partial overlapping area situation code: https://github.com/jieliu/point_cloud_registration
6,使用ICP实现点云的配准与拼接的SLAM算法
code:https://github.com/kzampog/kabamaru
7,Fast Point Feature Histograms (FPFH) for 3D Registration.
8,3D Point Cloud Registration for Localization using a Deep Neural Network Auto-Encoder.
code:https://github.com/gilbaz/LORAX
9,Density Adaptive Point Set Registration.
code:https://github.com/felja633/DARE
10,Fast rotation search with stereographic projections for 3D registration
code:https://cs.adelaide.edu.au/~aparra/project/pcr/
11,Discriminative Optimization: Theory and Applications to Point Cloud Registration pdf:https://www.researchgate.net/publication/320964941_Discriminative_Optimization_Theory_and_Applications_to_Point_Cloud_Registration
12,Markerless point cloud registration with keypoint-based 4-points congruent sets
pdf:https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5-W2/283/2013/
13,Comparing ICP Variants on Real-World Data Sets code:https://github.com/ethz-asl/libpointmatcher
……