前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >TensorFlow 是如何解读深度学习中的“嵌入”

TensorFlow 是如何解读深度学习中的“嵌入”

作者头像
double
发布于 2018-07-25 10:14:42
发布于 2018-07-25 10:14:42
6270
举报
文章被收录于专栏:算法channel算法channel
今天和大家分享一个深度学习中的基础概念:嵌入。关于嵌入提出几个问题,读者朋友们,你们可以先思考下。然后带着这些问题,点击阅读原文,查看官方解答。

1、为什么要有嵌入?

2、什么是嵌入?

3、如何得到嵌入向量?

4、 如何可视化展示嵌入向量?

5、嵌入向量的实际应用有哪些?

一个单词集合,这些属于离散的非数值型对象,数值计算的基本要求是数值型,所以需要将他们映射为实数向量。

嵌入是将离散对象数值化的过程。

嵌入向量,google 开源的 word2vec 模型做了这件事,现在 TensorFlow 中调用 API 几行代码便可以实现:

word_embeddings = tf.get_variable(“word_embeddings”, [vocabulary_size, embedding_size]) embedded_word_ids = tf.nn.embedding_lookup(word_embeddings, word_ids)

embedded_word_ids 的形状 [vocabulary_size, embedding_size]

可视化展示主要需要对高维向量降维。

嵌入可以通过很多网络类型进行训练,并具有各种损失函数和数据集。例如,对于大型句子语料库,可以使用递归神经网络根据上一个字词预测下一个字词,还可以训练两个网络来进行多语言翻译。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-04-26,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 程序员郭震zhenguo 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
[TensorFlow深度学习深入]实战一·使用embedding_lookup模块对Word2Vec训练保存与简单使用
One hot representation用来表示词向量非常简单,但是却有很多问题。最大的问题是我们的词汇表一般都非常大,比如达到百万级别,这样每个词都用百万维的向量来表示简直是内存的灾难。这样的向量其实除了一个位置是1,其余的位置全部都是0,表达的效率不高,能不能把词向量的维度变小呢?
小宋是呢
2019/06/27
1.8K0
教程 | 在Python和TensorFlow上构建Word2Vec词嵌入模型
选自adventuresinmachinelearning 机器之心编译 参与:李诗萌、刘晓坤 本文详细介绍了 word2vector 模型的模型架构,以及 TensorFlow 的实现过程,包括数据
机器之心
2018/05/09
1.9K0
教程 | 在Python和TensorFlow上构建Word2Vec词嵌入模型
深度学习算法(第24期)----自然语言处理中的Word Embedding
深度学习算法(第23期)----RNN中的GRU模块 今天我们一起简单学习下自然语言处理中的Word Embedding.
智能算法
2019/08/20
6400
TensorFlow深度学习笔记 循环神经网络实践
加载数据 使用text8作为训练的文本数据集 text8中只包含27种字符:小写的从a到z,以及空格符。如果把它打出来,读起来就像是去掉了所有标点的wikipedia。 直接调用lesson1中maybe_download下载text8.zip 用zipfile读取zip内容为字符串,并拆分成单词list 用connections模块统计单词数量并找出最常见的单词 达成随机取数据的目标 构造计算单元 embeddings = tf.Variable( tf.random_uniform([
梦里茶
2018/01/15
1K0
TensorFlow深度学习笔记 循环神经网络实践
Word2vec原理浅析及tensorflow实现
词向量的重要意义在于将自然语言转换成了计算机能够理解的向量。相对于词袋模型、TF-IDF等模型,词向量能抓住词的上下文、语义,衡量词与词的相似性,在文本分类、情感分析等许多自然语言处理领域有重要作用。
用户1332428
2018/07/30
6370
Word2vec原理浅析及tensorflow实现
Tensorflow实现word2vec
摘要总结:本文研究了如何通过使用技术社区中的内容编辑人员来提高内容质量,并总结了相关的方法和实践。
GavinZhou
2018/01/02
1.4K0
Tensorflow实现word2vec
DL杂记:word2vec之TF-IDF、共轭矩阵、cbow、skip-gram
版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。 https://blog.csdn.net/u014365862/article/details/87800246
MachineLP
2019/05/26
8130
【NLP实战】tensorflow词向量训练实战
实战是学习一门技术最好的方式,也是深入了解一门技术唯一的方式。因此,NLP专栏计划推出一个实战专栏,让有兴趣的同学在看文章之余也可以自己动手试一试。
用户1508658
2019/10/14
1.1K0
【NLP实战】tensorflow词向量训练实战
python代码实战 | 用 TensorFlow 实现序列标注:基于bi-LSTM+CRF和字符嵌入实现NER和POS
我记得我第一次听说深度学习在自然语言处理(NLP)领域的魔力。 我刚刚与一家年轻的法国创业公司Riminder开始了一个项目,这是我第一次听说字嵌入。 生活中有一些时刻,与新理论的接触似乎使其他一切无关紧要。 听到单词向量编码了单词之间相似性和意义就是这些时刻之一。 当我开始使用这些新概念时,我对模型的简单性感到困惑,构建了我的第一个用于情感分析的递归神经网络。 几个月后,作为法国大学高等理工学院硕士论文的一部分,我正在 Proxem 研究更高级的序列标签模型。
磐创AI
2019/05/05
3.6K0
python代码实战 | 用 TensorFlow 实现序列标注:基于bi-LSTM+CRF和字符嵌入实现NER和POS
万物皆可embedding
本篇接上篇《都步入2021年,别总折腾"塔"了》,继续学习nlp。我们在做推荐系统的时候,所有离散特征(连续值也可以分桶处理)都给embedding了,nlp中也一样,每个单词,每个字,每个标点,都可以做embedding。那么问题来了,推荐系统的学习目标是点击率,那nlp中学词embedding的目标是啥?上文我们提到计数(上下文单词做BOW)的方法,生成每个词的稠密向量 。这种方法虽然不需要设定任何目标,但是靠谱吗?答案是非常不靠谱,语料库的单词有百万级别,百万*百万的矩阵,计算是不现实的,用降维方法都是要耗费大量的计算资源和时间,这时候word2vec的优势就体现出来了。
炼丹笔记
2021/05/14
6270
万物皆可embedding
教程 | 如何使用深度学习执行文本实体提取
选自TowardsDataScience 作者:Dhanoop Karunakaran等 机器之心编译 参与:Tianci LIU、路 本文介绍了如何使用深度学习执行文本实体提取。作者尝试了分别使用深
机器之心
2018/05/08
1.5K0
教程 | 如何使用深度学习执行文本实体提取
TF使用例子-情感分类
这次改写一下,做一个简单的分类模型和探讨一下hidden layer在聚类的应用场景下会有什么效果。为了能写的尽可能让读者理解,本文也会写一下keras来实现(就几行代码)。 01 爬取数据 网上有很多的爬虫教程,这里不具体讲了,不过强烈建议爬别人网站的时候先找找有没有现成的api(比如你想爬网易云音乐的歌词评论数据什么的o( ̄▽ ̄)d)。 我这里爬了bangumi上一些作品的评论,附上代码(crawler.py): #!/usr/bin/env python # -*- coding: utf-8 -*
用户1332428
2018/03/09
1.1K0
TF使用例子-情感分类
tensorflow 0.10 word2vec 源码解析
版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/u012436149/article/details/52848013
ke1th
2019/05/27
8360
从锅炉工到AI专家(9)
无监督学习 前面已经说过了无监督学习的概念。无监督学习在实际的工作中应用还是比较多见的。 从典型的应用上说,监督学习比较多用在“分类”上,利用给定的数据,做出一个决策,这个决策在有限的给定可能性中选择其中一种。各类识别、自动驾驶等都属于这一类。 无监督学习则是“聚类”,算法自行寻找输入数据集的规律,并把它们按照规律分别组合,同样特征的放到一个类群。像自然语言理解、推荐算法、数据画像等,都属于这类(实际实现中还是比较多用半监督学习,但最早概念的导入还是属于无监督学习)。 无监督学习的确是没有人工的标注,
俺踏月色而来
2018/06/20
6340
猪年快乐之TensorFlow中实现word2vec及如何结构化TensorFlow模型
猪年快乐之TensorFlow中实现word2vec及如何结构化TensorFlow模型
公众号guangcity
2019/09/20
1.2K0
猪年快乐之TensorFlow中实现word2vec及如何结构化TensorFlow模型
译:Tensorflow实现的CNN文本分类
翻译自博客:IMPLEMENTING A CNN FOR TEXT CLASSIFICATION IN TENSORFLOW 原博文:http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ github:https://github.com/dennybritz/cnn-text-classification-tf 在这篇文章中,我们将实现一个类似于Kim Yoon的卷积神经网络语句分类
Spark学习技巧
2018/06/22
1.3K0
机器学习中的嵌入:释放表征的威力
机器学习通过使计算机能够从数据学习和做出预测来彻底改变了人工智能领域。机器学习的一个关键方面是数据的表示,因为表示形式的选择极大地影响了算法的性能和有效性。嵌入已成为机器学习中的一种强大技术,提供了一种捕获和编码数据点之间复杂关系的方法。本文[1]探讨了嵌入的概念,其意义及其在各个领域的应用。
数据科学工厂
2023/11/03
3770
机器学习中的嵌入:释放表征的威力
TensorFlow 机器学习秘籍第二版:6~8
在本章中,我们将介绍神经网络以及如何在 TensorFlow 中实现它们。大多数后续章节将基于神经网络,因此学习如何在 TensorFlow 中使用它们非常重要。在开始使用多层网络之前,我们将首先介绍神经网络的基本概念。在上一节中,我们将创建一个神经网络,学习如何玩井字棋。
ApacheCN_飞龙
2023/04/23
9520
Tensorflow实战系列:手把手教你使用LSTM进行文本分类(附完整代码)
【导读】专知小组计划近期推出Tensorflow实战系列,计划教大家手把手实战各项子任务。本教程旨在手把手教大家使用Tensorflow构建LSTM进行文本分类。教程使用了伪造的文本数据进行情感分类,有正面情感数据和负面情感数据。并且教程代码包含了配置信息,将数据处理为LSTM的输入格式,以及定义和训练相关代码,因此希望在日常项目中使用Tensorflow的朋友可以参考这篇教程。 专知公众号以前连载关于Tensorflow1.4.0的系列教程: 最新TensorFlow1.4.0教程完整版 Tensorfl
WZEARW
2018/04/13
8.7K0
基于tensorflow+RNN的新浪新闻文本分类
tensorflow是谷歌google的深度学习框架,tensor中文叫做张量,flow叫做流。 RNN是recurrent neural network的简称,中文叫做循环神经网络。 文本分类是NLP(自然语言处理)的经典任务。
潇洒坤
2018/10/18
1.6K0
基于tensorflow+RNN的新浪新闻文本分类
推荐阅读
相关推荐
[TensorFlow深度学习深入]实战一·使用embedding_lookup模块对Word2Vec训练保存与简单使用
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档