前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >理解Logistic回归算法原理与Python实现

理解Logistic回归算法原理与Python实现

作者头像
chaibubble
发布2018-01-02 10:33:49
1.5K0
发布2018-01-02 10:33:49
举报
文章被收录于专栏:深度学习与计算机视觉

一般的机器学习的实现大致都是这样的步骤: 1.准备数据,包括数据的收集,整理等等 2.定义一个学习模型(learning function model),也就是最后要用来去预测其他数据的那个模型 3.定义损失函数(loss function),就是要其做优化那个,以确定模型中参数的那个函数。 4.选择一个优化策略(optimizer),用来根据损失函数不断优化模型的参数。 5.根据训练数据(train data)训练模型(learning function model) 6.根据测试数据(test data)求得模型预测的准确率。

而Logistic回归同样遵循这个步骤,上面的步骤中一,五,六自然是不用说的,剩下的Logistic回归算法与其他的机器学习算法的区别也只在于第二步—学习模型的选择。所以下面主要解释Logistic回归到底确定了一个什么样的模型,然后简单说下损失函数与优化策略。 先来简要介绍一下Logistic回归:Logistic回归其实只是简单的对特征(feature)做加权相加后结果输入给Sigmoid函数,经过Sigmoid函数后的输出用来确定二分类的结果。所以Logistic回归的优点在于计算代价不高,容易理解和实现。缺点是很容易造成欠拟合,分类的精度不高。还有一个很重要的地方是神经网络中的一个神经元其实可以理解为一个Logistic回归模型。

Sigmoid函数

首先说下Sigmoid函数,因为它在Logistic回归起着重要的作用,Sigmoid函数是一个在生物学中常见的S型的函数,也称为S型生长曲线。Sigmoid函数由下列公式定义:

下面是两种尺度下的Sigmoid函数图:

可以看到,在横坐标跨度足够大时,sigmoid函数看起来很像一个阶跃函数。 除此之外,sigmoid函数还有如下特点: 一个良好的阈值函数(最大值趋近于1,最小值趋近于0),连续,光滑,严格单调,且关于(0,0.5)中心对称。

Logistic回归模型

Logistic回归为了解决二分类问题,需要的是一个这样的函数:函数的输入应当能从负无穷到正无穷,函数的输出0或1。这样的函数很容易让人联想到单位阶跃函数:

就是上面这个东西,但是单位阶跃函数在跳跃点上从0瞬间跳跃到1,这个瞬间跳跃的过程决定了它并不是连续的,所以它并不是最好的选择,对的,Logistic回归最后选择了上面提到的sigmoid函数。由于sigmoid函数是按照0.5中心对称的,所以只需将它的输出大于0.5的数据作为“1类”,小于0.5的数据作为“0类”就这样实现了二分类的问题。 确定了sigmoid函数输出怎么处理的问题,那么sigmoid函数的输入又是什么? 其实只是每一个特征(feature)上都乘以一个回归系数,然后把所有的结果值相加,定义sigmoid函数输入为z,那么:

其中

就是特征了,而

就是需要训练得到的参数。我们都将它用向量的形式表达即为:

所以Logistic回归模型的形式可以写成:

至此,Logistic回归模型就确定好了:

损失函数与优化策略

或者:

上面上个公式也可以称之为Logistic回归的损失函数(loss function)。

那么对于第一个损失函数,可以采用(随机)梯度上升来作为优化策略,对于第二个损失函数,用(随机)梯度下降就好了。

Python实现

这个例子来源于《机器学习实战》,在这里可以下载电子版。 这个例子使用Logistic回归与随机梯度上升算法来预测病马的生死,下面会贴出源码并简单说明,但是如果想要使用例程中的数据,可以下载整个例程

代码语言:javascript
复制
from numpy import *

def loadDataSet():
    dataMat = []; labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)             #convert to NumPy matrix
    labelMat = mat(classLabels).transpose() #convert to NumPy matrix
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = ones((n,1))
    for k in range(maxCycles):              #heavy on matrix operations
        h = sigmoid(dataMatrix*weights)     #matrix mult
        error = (labelMat - h)              #vector subtraction
        weights = weights + alpha * dataMatrix.transpose()* error #matrix mult
    return weights

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat=loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0] 
    xcord1 = []; ycord1 = []
    xcord2 = []; ycord2 = []
    for i in range(n):
        if int(labelMat[i])== 1:
            xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30, c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0]-weights[1]*x)/weights[2]
    ax.plot(x, y)
    plt.xlabel('X1'); plt.ylabel('X2');
    plt.show()

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not 
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            h = sigmoid(sum(dataMatrix[randIndex]*weights))
            error = classLabels[randIndex] - h
            weights = weights + alpha * error * dataMatrix[randIndex]
            del(dataIndex[randIndex])
    return weights

def classifyVector(inX, weights):
    prob = sigmoid(sum(inX*weights))
    if prob > 0.5: return 1.0
    else: return 0.0

def colicTest():
    frTrain = open('horseColicTraining.txt'); frTest = open('horseColicTest.txt')
    trainingSet = []; trainingLabels = []
    for line in frTrain.readlines():
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        trainingSet.append(lineArr)
        trainingLabels.append(float(currLine[21]))
    trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 1000)
    errorCount = 0; numTestVec = 0.0
    for line in frTest.readlines():
        numTestVec += 1.0
        currLine = line.strip().split('\t')
        lineArr =[]
        for i in range(21):
            lineArr.append(float(currLine[i]))
        if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
            errorCount += 1
    errorRate = (float(errorCount)/numTestVec)
    print "the error rate of this test is: %f" % errorRate
    return errorRate

def multiTest():
    numTests = 10; errorSum=0.0
    for k in range(numTests):
        errorSum += colicTest()
    print "after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests))

其中定义的函数分别为如下功能: loadDataSet():数据准备; sigmoid():定义sigmoid函数; gradAscent():梯度上升算法; plotBestFit():画出决策边界; stocGradAscent0():随机梯度上升算法; stocGradAscent1():一种改进的随机梯度上升算法; classifyVector():一回归系数和特征向量作为输入来计算对应的sigmoid值; colicTest():打开测试集和训练集,并对数据进行格式化处理; multiTest():调用colicTest()10次并求结果的平均值。

所以运行上述代码后,在Python提示窗中输入:

代码语言:javascript
复制
>>> import logRegres
>>> reload(logRegres)
<module 'logRegres' from 'F:\学习资料\机器学习与计算机视觉资料\《机器学习实战》电子书和源码\machinelearninginaction\Ch05\logRegres.pyc'>
>>> logRegres.multiTest()

最后程序输出:

代码语言:javascript
复制
the error rate of this test is: 0.358209
the error rate of this test is: 0.283582
the error rate of this test is: 0.298507
the error rate of this test is: 0.417910
the error rate of this test is: 0.388060
the error rate of this test is: 0.298507
the error rate of this test is: 0.328358
the error rate of this test is: 0.313433
the error rate of this test is: 0.402985
the error rate of this test is: 0.432836
after 10 iterations the average error rate is: 0.352239

0.352239就是最后的错误率了。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2017-05-19 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Sigmoid函数
  • Logistic回归模型
  • 损失函数与优化策略
  • Python实现
相关产品与服务
腾讯云 TI 平台
腾讯云 TI 平台(TencentCloud TI Platform)是基于腾讯先进 AI 能力和多年技术经验,面向开发者、政企提供的全栈式人工智能开发服务平台,致力于打通包含从数据获取、数据处理、算法构建、模型训练、模型评估、模型部署、到 AI 应用开发的产业 + AI 落地全流程链路,帮助用户快速创建和部署 AI 应用,管理全周期 AI 解决方案,从而助力政企单位加速数字化转型并促进 AI 行业生态共建。腾讯云 TI 平台系列产品支持公有云访问、私有化部署以及专属云部署。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档