暂无搜索历史
本笔记是 deeplearning.ai 最近推出的短期课程《ChatGPT Prompt Engineering for Developers》的学习总结。
Trino[1] 是一种支持使用 SQL 访问任意数据源的 SQL 查询引擎,其能够提供更加灵活与高效的查询服务。本章节将简单介绍 Trino 的基本功能与使用...
应用程序不可避免地需要随时间而变化、调整。在大多数情况下,更改应用程序功能时,也需要更改其存储的数据:可能需要捕获新的字段或记录类型,或者需要以新的方式呈现已有...
「计算机图形学」(computer graphics)可以用来描述通过计算机来创造与操作图像的任何用途。本书介绍了创造与操作这些图像的基本算法与数学工具,特别是...
上一章讨论了数据模型与查询语言,即向数据库给出数据时数据的格式以及数据查询的机制,其可以理解为从应用开发者的角度出发讨论了上述两件事情。本章将从「数据库」的角度...
本文是 「FLAT: Chinese NER Using Flat-Lattice Transformer」 一文的学习笔记。
「数据模型」(Data models)是软件开发中最重要的部分之一,大部分应用程序都是通过数据模型的层层叠加来构建的,例如:
上一节详细介绍了在三类基本假设下的各种因果推断方法,然而在实践中,对于某些特定场景下的应用,例如包含依赖性网络信息、特殊数据类型(如时间序列)或特殊条件(例如存...
本文是一篇综述文章 「A Survey on Causal Inference」 的阅读笔记(大部分内容参照原文进行了较为通俗易懂的翻译,小部分内容加入了自己的...
如今的计算机有着多种多样的交互接口来进行指令的输入,例如图形界面、语音输入等。这些接口虽然使用方便,但其从根本上限制了我们的操作方式——我们不能够点击一个不存在...
在计算机还没被发明之前,人们通过「电传打字机」(Teletype Model 33)来打印文字,每秒可以打印 10 个字符。然而,该机器存在一个问题:在打完一行...
「因果推断」(causal inference)是基于观察数据进行反事实估计,分析干预与结果之间的因果关系的一门科学。虽然在因果推断领域已经有许多的框架与方法,...
目前许多的新型应用都属于「数据密集型」(data-intensive),而不是计算密集型(compute-intensive),对于这些应用,CPU 的处理能力...
本系列旨在详细介绍 LaTeX 的使用,主要内容参考自著名的 「The Not So Short A Introduction to LaTeX」(Versio...
本系列参考自「Python Data Science Handbook」第三章,旨在对 Pandas 库的使用方法进行归纳与总结。
强化学习是机器学习中的一个子领域,其目标是为「代理」(agent)找到一个最优的行为策略以获得最大的奖励。「策略梯度」(policy gradient)是一类解...
作为人类,我们可以基于图 1 推断出一些新的信息,例如 EID15 的举办地点是 Santiago、有航班相连的城市必定存在机场等。在这些情况下,给定图中的数据...
在很多问题中,我们需要对一个链表中的节点连接进行反转,且通常需要原地进行,即不能使用额外的存储空间。这时我们可以使用就地反转链表模式,该模式本质上是一种迭代解法...
循环排序模式描述了一种解决包含给定范围数字的数组问题的有趣方法。具体来说,我们遍历数组的每一位数字,如果当前数字不在正确的索引上,则将其与正确的索引交换,如下图...
本节我们将介绍数据图的各种增强与扩展,包括「模式」(schema)、「身份」(identity)和「上下文」(context),它们为知识的聚合提供了额外的结构...
腾讯 | 应用研究 (已认证)