首页
学习
活动
专区
圈层
工具
发布
社区首页 >专栏 >雅可比矩阵和行列式_雅可比行列式的意义

雅可比矩阵和行列式_雅可比行列式的意义

作者头像
全栈程序员站长
发布2022-11-17 10:15:40
发布2022-11-17 10:15:40
5.5K0
举报

大家好,又见面了,我是你们的朋友全栈君。

1,Jacobian matrix and determinant

在向量微积分学中,雅可比矩阵是向量对应的函数(就是多变量函数,多个变量可以理解为一个向量,因此多变量函数就是向量函数)的一阶偏微分以一定方式排列形成的矩阵。

如果这个矩阵为方阵,那么这个方阵的行列式叫雅可比行列式。

2,雅可比矩阵数学定义

假设函数f可以将一个n维向量 x ⃗ \vec{x} x ( x ⃗ ∈ R n \vec{x}\in R^n x ∈Rn)变成一个m维向量f( x ⃗ \vec{x} x ), f ( x ⃗ ) ∈ R m f(\vec{x})\in R^m f(x )∈Rm, (显然f是由m个实函数组成的函数) 则函数f的雅可比矩阵 J f J_f Jf​可以定义如下: J f = [ ∂ f ∂ x 1 . . . ∂ f ∂ x n ] = [ ∂ f 1 ∂ x 1 . . . ∂ f 1 ∂ x n ⋮ ⋱ ⋮ ∂ f m ∂ x 1 . . . ∂ f m ∂ x n ] J_f= \left[ \begin{matrix} \frac{\partial f}{\partial x_1} & … & \frac{\partial f}{\partial x_n} \end{matrix} \right]= \left[ \begin{matrix} \frac{\partial f_1}{\partial x_1} & … & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots\\ \frac{\partial f_m}{\partial x_1} & … & \frac{\partial f_m}{\partial x_n} \\ \end{matrix} \right] Jf​=[∂x1​∂f​​...​∂xn​∂f​​]=⎣⎢⎡​∂x1​∂f1​​⋮∂x1​∂fm​​​...⋱...​∂xn​∂f1​​⋮∂xn​∂fm​​​⎦⎥⎤​

对于单个元素而言,可以定义如下: J i j = ∂ f i ∂ x j J_{ij}=\frac{\partial f_i}{\partial x_j} Jij​=∂xj​∂fi​​

函数f的雅可比矩阵的其它标记方法为 ∂ ( f 1 , . . . , f m ) ∂ ( x 1 , . . . , x n \frac{\partial (f_1, …, f_m)}{\partial (x_1, …, x_n} ∂(x1​,...,xn​∂(f1​,...,fm​)​

3,例子

3.1 设函数f为二维空间到二维空间的变换

3.2 极坐标到笛卡尔坐标的变换

3.3 球坐标到笛卡尔坐标的变换

3.4 三维空间到四维空间的变换

3.5 三维空间到三维空间的变换

4,雅可比矩阵意义

雅可比矩阵 J f ( p ) J_f(p) Jf​(p)就是函数f在n维空间某点p处的导数,它是一个线性映射(因为它是一个矩阵,矩阵本身代表着线性变换),它代表着函数f在点p处的最优线性逼近,也就是当x足够靠近点p时,我们有 f ( x ) ≈ f ( p ) + J f ( p ) ∗ ( x − p ) f(x)\thickapprox f(p)+J_f(p)*(x-p) f(x)≈f(p)+Jf​(p)∗(x−p)

这跟2维空间中在某点附近线性逼近一段曲线很类似,如果雅可比矩阵只有一个元素,它就等于2维空间中曲线在某点处的导数。

Note: 微分的本质就是线性化,在局部用线性变化代替非线性变化。

5,雅可比行列式意义

代表经过变换后的空间与原空间的面积(2维)、体积(3维)等等的比例,也有人称缩放因子。

Reference

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/209955.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2022年10月25日,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1,Jacobian matrix and determinant
  • 2,雅可比矩阵数学定义
  • 3,例子
  • 4,雅可比矩阵意义
  • Note: 微分的本质就是线性化,在局部用线性变化代替非线性变化。
  • 5,雅可比行列式意义
  • Reference
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档