前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >「SF-LC」14 ImpCEvalFun

「SF-LC」14 ImpCEvalFun

作者头像
零式的天空
发布2022-03-14 14:44:15
4600
发布2022-03-14 14:44:15
举报
文章被收录于专栏:零域Blog

Step-Indexed Evaluator

…Copied from 12-imp.md:

Chapter ImpCEvalFun provide some workarounds to make functional evalution works:

  1. step-indexed evaluator, i.e. limit the recursion depth. (think about Depth-Limited Search).
  2. return option to tell if it’s a normal or abnormal termination.
  3. use LETOPT...IN... to reduce the “optional unwrapping” (basicaly Monadic binding >>=!) this approach of let-binding became so popular in ML family.
代码语言:javascript
复制
Notation "'LETOPT' x <== e1 'IN' e2"
   := (match e1 with
         | Some x ⇒ e2
         | None ⇒ None
       end)
   (right associativity, at level 60).

Open Scope imp_scope.
Fixpoint ceval_step (st : state) (c : com) (i : nat)
                    : option state :=
  match i with
  | O ⇒ None       (* depth-limit hit! *)
  | S i' ⇒
    match c with
      | SKIP ⇒
          Some st
      | l ::= a1 ⇒
          Some (l !-> aeval st a1 ; st)
      | c1 ;; c2 ⇒
          LETOPT st' <== ceval_step st c1 i' IN    (* option bind *)
          ceval_step st' c2 i'
      | TEST b THEN c1 ELSE c2 FI ⇒
          if (beval st b)
            then ceval_step st c1 i'
            else ceval_step st c2 i'
      | WHILE b1 DO c1 END ⇒
          if (beval st b1)
          then LETOPT st' <== ceval_step st c1 i' IN
               ceval_step st' c i'
          else Some st
    end
  end.
Close Scope imp_scope.

Relational vs. Step-Indexed Evaluation

Prove ceval_step is equiv to ceval

->

代码语言:javascript
复制
Theorem ceval_step__ceval: forall c st st',
      (exists i, ceval_step st c i = Some st') ->
      st =[ c ]=> st'.

The critical part of proof:

  • destruct for the i.
  • induction i, generalize on all st st' c.
    1. i = 0 case contradiction
    2. i = S i' case; destruct c.
      • destruct (ceval_step ...) for the option
        1. None case contradiction
        2. Some case, use induction hypothesis…

<-

代码语言:javascript
复制
Theorem ceval__ceval_step: forall c st st',
      st =[ c ]=> st' ->
      exists i, ceval_step st c i = Some st'.
Proof.
  intros c st st' Hce.
  induction Hce.
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2021-03-28,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Step-Indexed Evaluator
  • Relational vs. Step-Indexed Evaluation
    • ->
      • <-
      领券
      问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档