前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【HDU 1757】 A Simple Math Problem

【HDU 1757】 A Simple Math Problem

作者头像
饶文津
发布2020-05-31 23:40:16
4090
发布2020-05-31 23:40:16
举报
文章被收录于专栏:饶文津的专栏

Description

Lele now is thinking about a simple function f(x).  If x < 10 f(x) = x.  If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);  And ai(0<=i<=9) can only be 0 or 1 .  Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m. 

Input

The problem contains mutiple test cases.Please process to the end of file.  In each case, there will be two lines.  In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )  In the second line , there are ten integers represent a0 ~ a9. 

Output

For each case, output f(k) % m in one line.

Sample Input

10 9999

1 1 1 1 1 1 1 1 1 1

20 500

1 0 1 0 1 0 1 0 1 0

Sample Output

45

104

题意:按f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10) (x>=10) ; f(x) = x(x<10)来计算f(x)%m的值。

分析:这题要用递推,并且k值很大,所以需要用矩阵快速幂。

构造的矩阵是:

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 1                     1                     1                     1                     1                     1                     1                     1                     1

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

1

1

1

1

1

1

1

1

1

*

f(x-1) f(x-2) f(x-3) f(x-4) f(x-5) f(x-6) f(x-7) f(x-8) f(x-9) f(x-10)

f(x-1)

f(x-2)

f(x-3)

f(x-4)

f(x-5)

f(x-6)

f(x-7)

f(x-8)

f(x-9)

f(x-10)

=

f(x) f(x-1) f(x-2) f(x-3) f(x-4) f(x-5) f(x-6) f(x-7) f(x-8) f(x-9)

f(x)

f(x-1)

f(x-2)

f(x-3)

f(x-4)

f(x-5)

f(x-6)

f(x-7)

f(x-8)

f(x-9)

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

1

1

1

1

1

1

1

1

1

f(x-1)

f(x-2)

f(x-3)

f(x-4)

f(x-5)

f(x-6)

f(x-7)

f(x-8)

f(x-9)

f(x-10)

f(x)

f(x-1)

f(x-2)

f(x-3)

f(x-4)

f(x-5)

f(x-6)

f(x-7)

f(x-8)

f(x-9)

写个结构类型代表矩阵,以及矩阵的相乘的函数和矩阵快速幂的函数,注意一下初始化。

代码语言:javascript
复制
#include<stdio.h>
#include<string.h>
int n,k,m;
struct matrix
{
    int a[15][15];
    int row,col;
    void init(int r,int c){
        memset(a,0,sizeof(a));
        row=r;col=c;
    }
} big,f,u;
matrix mul(matrix a,matrix b)
{
    matrix c;
    c.init(a.row,b.col);
    for(int i=0; i<a.row; i++)
        for(int j=0; j<b.col; j++)
        {
            for(int k=0; k<a.col; k++)
                c.a[i][j]+=(a.a[i][k]*b.a[k][j])%m;
            c.a[i][j]%=m;
        }
    return c;
}
void init()
{
    big.init(10,10);
    f.init(10,1);
    for(int i=1; i<10; i++)
        big.a[i][i-1]=1;
    for(int i=0; i<10; i++)
        f.a[i][0]=9-i;
}
matrix qpow(matrix a,int k)
{
    matrix ans;
    ans.init(a.row,a.col);
    for(int i=0;i<a.row;i++)
        ans.a[i][i]=1;
    while(k)
    {
        if(k&1)ans=mul(ans,a);
        a=mul(a,a);
        k>>=1;
    }
    return ans;
}
int main()
{
    init();
    while(~scanf("%d%d",&k,&m))
    {
        for(int i=0; i<10; i++)
            scanf("%d",&big.a[0][i]);
        u=mul(qpow(big,k-9),f);
        printf("%d\n",u.a[0][0]%m);
    }
    return 0;
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2016-02-06 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档