Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Tensorflow MobileNet移植到Android

Tensorflow MobileNet移植到Android

原创
作者头像
superhua
发布于 2018-10-23 12:12:18
发布于 2018-10-23 12:12:18
1.8K0
举报
文章被收录于专栏:CNNCNN

1 CKPT模型转换pb文件

使用上一篇博客《MobileNet V1官方预训练模型的使用》中下载的MobileNet V1官方预训练的模型《MobileNet_v1_1.0_192》。虽然打包下载的文件中包含已经转换过的pb文件,但是官方提供的pb模型输出是1001类别对应的概率,我们需要的是概率最大的3类。可在原始网络中使用函数tf.nn.top_k获取概率最大的3类,将函数tf.nn.top_k作为网络中的一个计算节点。模型转换代码如下所示。

代码语言:txt
AI代码解释
复制
import tensorflow as tf
from mobilenet_v1 import mobilenet_v1,mobilenet_v1_arg_scope 
import numpy as np
slim = tf.contrib.slim
CKPT = 'mobilenet_v1_1.0_192.ckpt'  

def build_model(inputs):   
    with slim.arg_scope(mobilenet_v1_arg_scope(is_training=False)):
        logits, end_points = mobilenet_v1(inputs, is_training=False, depth_multiplier=1.0, num_classes=1001)
    scores = end_points['Predictions']
    print(scores)
    #取概率最大的5个类别及其对应概率
    output = tf.nn.top_k(scores, k=3, sorted=True)
    #indices为类别索引,values为概率值
    return output.indices,output.values

def load_model(sess):
    loader = tf.train.Saver()
    loader.restore(sess,CKPT)
   
inputs=tf.placeholder(dtype=tf.float32,shape=(1,192,192,3),name='input')
classes_tf,scores_tf = build_model(inputs)  
classes = tf.identity(classes_tf, name='classes')
scores = tf.identity(scores_tf, name='scores') 
with tf.Session() as sess:
    load_model(sess)
    graph = tf.get_default_graph()
    output_graph_def = tf.graph_util.convert_variables_to_constants(
        sess, graph.as_graph_def(), [classes.op.name,scores.op.name]) 
    tf.train.write_graph(output_graph_def, 'model', 'mobilenet_v1_1.0_192.pb', as_text=False)

上面代码中,单一的所有类别概率经过计算节点tf.nn.top_k后分为两个输出:概率最大的3个类别classes,概率最大的3个类别的概率scores。执行上面代码后,在目录“model”中得到文件mobilenet_v1_1.0_192.pb

2 移植到Android中

2.1 AndroidStudio中使用Tensorflow Mobile

首先,AndroidStudio版本必须是3.0及以上。创建Android Project后,在Module:appbuild.gradle文件中的dependencies中加入如下:

代码语言:txt
AI代码解释
复制
 compile 'org.tensorflow:tensorflow-android:+'

2.2 Tensorflow Mobile接口

使用Tensorflow Mobile库中模型调用封装类org.tensorflow.contrib.android.TensorFlowInferenceInterface完成模型的调用,主要使用的如下函数。

代码语言:txt
AI代码解释
复制
 public TensorFlowInferenceInterface(AssetManager assetManager, String model){...}
 public void feed(String inputName, float[] src, long... dims) {...}
 public void run(String[] outputNames) {...}
 public void fetch(String outputName, int[] dst) {...}

其中,构造函数中的参数model表示目录“assets”中模型名称。feed函数中参数inputName表示输入节点的名称,即对应模型转换时指定输入节点的名称“input”,参数src表示输入数据数组,变长参数dims表示输入的维度,如传入1,192,192,3则表示输入数据的Shape=[1,192,192,3]。函数run的参数outputNames表示执行从输入节点到outputNames中节点的所有路径。函数fetch中参数outputName表示输出节点的名称,将指定的输出节点的数据拷贝到dst中。

2.3 Bitmap对象转float[]

注意到,在2.1小节中函数feed传入到输入节点的数据对象是float[]。因此有必要将Bitmap转为float[]对象,示例代码如下所示。

代码语言:txt
AI代码解释
复制
    //读取Bitmap像素值,并放入到浮点数数组中。归一化到[-1,1]
    private float[] getFloatImage(Bitmap bitmap){
        Bitmap bm = getResizedBitmap(bitmap,inputWH,inputWH);
        bm.getPixels(inputIntData, 0, bm.getWidth(), 0, 0, bm.getWidth(), bm.getHeight());
        for (int i = 0; i < inputIntData.length; ++i) {
            final int val = inputIntData[i];
            inputFloatData[i * 3 + 0] =(float) (((val >> 16) & 0xFF)/255.0-0.5)*2;
            inputFloatData[i * 3 + 1] = (float)(((val >> 8) & 0xFF)/255.0-0.5)*2;
            inputFloatData[i * 3 + 2] = (float)(( val & 0xFF)/255.0-0.5)*2 ;
        }
        return inputFloatData;
    }

由于MobileNet V1预训练的模型输入数据归一化到[-1,1],因此在函数getFloatImage中转换数据的同时将数据归一化到[-1,1]

2.4 封装模型调用

为了便于调用,将与模型相关的调用函数封装到类TFModelUtils中,通过TFModelUtilsrun函数完成模型的调用,示例代码如下所示。

代码语言:txt
AI代码解释
复制
package com.huachao.mn_v1_192; 
import android.content.res.AssetManager;
import android.graphics.Bitmap;
import android.graphics.Matrix;
import android.util.Log; 
import org.tensorflow.contrib.android.TensorFlowInferenceInterface; 
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map; 
public class TFModelUtils {
    private TensorFlowInferenceInterface inferenceInterface;
    private int[] inputIntData ;
    private float[] inputFloatData ;
    private int inputWH;
    private String inputName;
    private String[] outputNames; 
    private Map<Integer,String> dict;
    public TFModelUtils(AssetManager assetMngr,int inputWH,String inputName,String[]outputNames,String modelName){
        this.inputWH=inputWH;
        this.inputName=inputName;
        this.outputNames=outputNames;
        this.inputIntData=new int[inputWH*inputWH];
        this.inputFloatData = new float[inputWH*inputWH*3];
        //从assets目录加载模型
        inferenceInterface= new TensorFlowInferenceInterface(assetMngr, modelName);
        this.loadLabel(assetMngr);
    }
    public Map<String,Object> run(Bitmap bitmap){ 
        float[] inputData = getFloatImage(bitmap);
        //将输入数据复制到TensorFlow中,指定输入Shape=[1,INPUT_WH,INPUT_WH,3]
        inferenceInterface.feed(inputName, inputData, 1, inputWH, inputWH, 3); 
        // 执行模型
        inferenceInterface.run( outputNames ); 
        //将输出Tensor对象复制到指定数组中
        int[] classes=new int[3];
        float[] scores=new float[3];
        inferenceInterface.fetch(outputNames[0], classes);
        inferenceInterface.fetch(outputNames[1], scores);
        Map<String,Object> results=new HashMap<>();
        results.put("scores",scores);
        String[] classesLabel = new String[3];
        for(int i =0;i<3;i++){
            int idx=classes[i];
            classesLabel[i]=dict.get(idx);
//            System.out.printf("classes:"+dict.get(idx)+",scores:"+scores[i]+"\n");
        }
        results.put("classes",classesLabel);
        return results;


    }
    //读取Bitmap像素值,并放入到浮点数数组中。归一化到[-1,1]
    private float[] getFloatImage(Bitmap bitmap){
        Bitmap bm = getResizedBitmap(bitmap,inputWH,inputWH);
        bm.getPixels(inputIntData, 0, bm.getWidth(), 0, 0, bm.getWidth(), bm.getHeight());
        for (int i = 0; i < inputIntData.length; ++i) {
            final int val = inputIntData[i];
            inputFloatData[i * 3 + 0] =(float) (((val >> 16) & 0xFF)/255.0-0.5)*2;
            inputFloatData[i * 3 + 1] = (float)(((val >> 8) & 0xFF)/255.0-0.5)*2;
            inputFloatData[i * 3 + 2] = (float)(( val & 0xFF)/255.0-0.5)*2 ;
        }
        return inputFloatData;
    }
    //对图像做Resize
    public Bitmap getResizedBitmap(Bitmap bm, int newWidth, int newHeight) {
        int width = bm.getWidth();
        int height = bm.getHeight();
        float scaleWidth = ((float) newWidth) / width;
        float scaleHeight = ((float) newHeight) / height;
        Matrix matrix = new Matrix();
        matrix.postScale(scaleWidth, scaleHeight);
        Bitmap resizedBitmap = Bitmap.createBitmap( bm, 0, 0, width, height, matrix, false);
        bm.recycle();
        return resizedBitmap;
    }

    private void loadLabel( AssetManager assetManager ) {
        dict=new HashMap<>();
        try {
            InputStream stream = assetManager.open("label.txt");
            InputStreamReader isr=new InputStreamReader(stream);
            BufferedReader br=new BufferedReader(isr);
            String line;
            while((line=br.readLine())!=null){
                line=line.trim();
                String[] arr = line.split(",");
                if(arr.length!=2)
                    continue;
                int key=Integer.parseInt(arr[0]);
                String value = arr[1];
                dict.put(key,value);
            }
        }catch (Exception e){
            e.printStackTrace();
            Log.e("ERROR",e.getMessage());
        }
    }
}

3 模型测试

测试模型
测试模型

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
将 TensorFlow 训练好的模型迁移到 Android APP上(TensorFlowLite)
最近在做一个数字手势识别的APP(关于这个项目,我会再写一篇博客仔细介绍,博客地址:一步步做一个数字手势识别APP,源代码已经开源在github上,地址:Chinese-number-gestures-recognition),要把在PC端训练好的模型放到Android APP上,调研了下,谷歌发布了TensorFlow Lite可以把TensorFlow训练好的模型迁移到Android APP上,百度也发布了移动端深度学习框架mobile-deep-learning(MDL),这个框架应该是paddlepaddle的手机版,具体的细节没有了解过。因为对TensorFlow稍微熟悉些,因此就决定用TensorFlow来做。
AI研习社
2018/08/06
2.1K0
将 TensorFlow 训练好的模型迁移到 Android APP上(TensorFlowLite)
[Tensorflow] 在Android运行TensorFlow模型
以下代码来自于TensorFlowObjectDetectionAPIModel.java
wOw
2018/09/18
2.1K0
MobileNet V1官方预训练模型的使用
MobileNet V1的网络结构可以直接从官方Github库中下载定义网络结构的文件,地址为:https://raw.githubusercontent.com/tensorflow/models/master/research/slim/nets/mobilenet_v1.py
superhua
2018/10/22
3.7K0
MobileNet V1官方预训练模型的使用
使用TensorFlow Lite在Android手机上实现图像分类
TensorFlow Lite是一款专门针对移动设备的深度学习框架,移动设备深度学习框架是部署在手机或者树莓派等小型移动设备上的深度学习框架,可以使用训练好的模型在手机等设备上完成推理任务。这一类框架的出现,可以使得一些推理的任务可以在本地执行,不需要再调用服务器的网络接口,大大减少了预测时间。在前几篇文章中已经介绍了百度的paddle-mobile,小米的mace,还有腾讯的ncnn。这在本章中我们将介绍谷歌的TensorFlow Lite。
夜雨飘零
2020/05/06
3.9K0
第四课:模型的使用
上一节我们创建了模型对象,也导入了测试集,可以说实现了一个简单机器学习的apk环境和核心代码。这一节我们一起看下开发一个完整的人工智能应用程序需要哪些步骤和代码。在详细分析代码之前我们先稍微看下有关 TensorFlow 的一些简单概念。 模型的一些概念 一个 TensorFlow 的计算任务叫做 Graph,一个 Graph 由很多节点(Op)组成, Op 通过 Tensor 获取输入,Op 完成计算以后再通过 Tensor 把输出传递到下一个节点。 Tensor 一般来说是一个数组(1 维或多维),我们
刘盼
2018/03/16
6220
第四课:模型的使用
如何使用 TensorFlow mobile 将 PyTorch 和 Keras 模型部署到移动设备
截止到今年,已经有超过 20 亿活跃的安卓设备。安卓手机的迅速普及很大程度上是因为各式各样的智能 app,从地图到图片编辑器应有尽有。随着深度学习的出现,我们的手机 app 将变得更加智能。下一代由深度学习驱动的手机 app 将可以学习并为你定制功能。一个很显著的例子是「Microsoft Swiftkey」,这是一个键盘 app, 能通过学习你常用的单词和词组来帮助你快速打字。
AI研习社
2018/07/26
3.7K0
如何使用 TensorFlow mobile 将 PyTorch 和 Keras 模型部署到移动设备
TensorFlow 智能移动项目:1~5
本章介绍如何设置开发环境,以使用 TensorFlow 构建所有 iOS 或 Android 应用,本书其余部分对此进行了讨论。 我们不会详细讨论可用于开发的所有受支持的 TensorFlow 版本,OS 版本,Xcode 和 Android Studio 版本,因为可以在 TensorFlow 网站或通过 Google。 相反,我们将在本章中简要讨论示例工作环境,以便我们能够快速了解​​可使用该环境构建的所有出色应用。
ApacheCN_飞龙
2023/04/24
4.7K0
[Tensorflow] 使用SSD-MobileNet训练模型
因为Android Demo里的模型是已经训练好的,模型保存的label都是固定的,所以我们在使用的时候会发现还有很多东西它识别不出来。那么我们就需要用它来训练我们自己的数据。下面就是使用SSD-MobileNet训练模型的方法。
wOw
2018/09/18
14K3
基于Tensorflow2 Lite在Android手机上实现图像分类
Tensorflow2之后,训练保存的模型也有所变化,基于Keras接口搭建的网络模型默认保存的模型是h5格式的,而之前的模型格式是pb。Tensorflow2的h5格式的模型转换成tflite格式模型非常方便。本教程就是介绍如何使用Tensorflow2的Keras接口训练分类模型并使用Tensorflow Lite部署到Android设备上。
夜雨飘零
2020/07/22
3.4K0
基于Tensorflow2 Lite在Android手机上实现图像分类
ensorFlow 智能移动项目:6~10
如果图像分类和物体检测是明智的任务,那么用自然语言描述图像绝对是一项更具挑战性的任务,需要更多的智能-请片刻考虑一下每个人如何从新生儿成长(他们学会了识别物体并检测它们的位置)到三岁的孩子(他们学会讲述图片故事)。 用自然语言描述图像的任务的正式术语是图像标题。 与具有长期研究和发展历史的语音识别不同,图像字幕(具有完整的自然语言,而不仅仅是关键词输出)由于其复杂性和 2012 年的深度学习突破而仅经历了短暂而令人兴奋的研究历史。
ApacheCN_飞龙
2023/04/24
1.8K0
在Android手机上使用MACE实现图像分类
在之前笔者有介绍过《在Android设备上使用PaddleMobile实现图像分类》,使用的框架是百度开源的PaddleMobile。在本章中,笔者将会介绍使用小米的开源手机深度学习框架MACE来实现在Android手机实现图像分类。
夜雨飘零
2020/05/06
1.5K0
精通 TensorFlow 1.x:16~19
TensorFlow 模型还可用于在移动和嵌入式平台上运行的应用。 TensorFlow Lite 和 TensorFlow Mobile 是资源受限移动设备的两种 TensorFlow。与 TensorFlow Mobile 相比,TensorFlow Lite 支持功能的子集。由于较小的二进制大小和较少的依赖项,TensorFlow Lite 可以获得更好的表现。
ApacheCN_飞龙
2023/04/23
5K0
干货 | tensorflow模型导出与OpenCV DNN中使用
Deep Neural Network - DNN 是OpenCV中的深度神经网络模块,支持基于深度学习模块前馈网络运行、实现图像与视频场景中的
OpenCV学堂
2019/04/29
5K0
干货 | tensorflow模型导出与OpenCV DNN中使用
Tensorflow Object Detection API 终于支持tensorflow1.x与tensorflow2.x了
基于tensorflow框架构建的快速对象检测模型构建、训练、部署框架,是针对计算机视觉领域对象检测任务的深度学习框架。之前tensorflow2.x一直不支持该框架,最近Tensorflow Object Detection API框架最近更新了,同时支持tensorflow1.x与tensorflow2.x。其中model zoo方面,tensorflow1.x基于COCO数据集预训练支持对象检测模型包括:
OpenCV学堂
2020/09/08
1.2K0
Tensorflow Object Detection API 终于支持tensorflow1.x与tensorflow2.x了
Tip | 数据类型占位 & 降采样 & 像素读取 & Bitmap & Color源码
下面修改通道的时候使用的是位运算, 其实对比Color源码我们知道这跟调用Color的API是一样的:
凌川江雪
2020/04/24
4170
Tip | 数据类型占位 & 降采样 & 像素读取 & Bitmap & Color源码
深度学习Tensorflow生产环境部署(下·模型部署篇)
部署完docker后,如果是cpu环境,可以直接拉取tensorflow/serving,如果是GPU环境则麻烦点,具体参考前一篇,这里就不再赘述了。
用户1154259
2019/01/07
1.8K0
OpenVINO运行Tensorflow模型
请先阅读我的上一篇文章《Visual Studio 2017 配置OpenVINO开发环境》,在VS2017中配置好OpenVINO环境。
superhua
2019/11/20
2.6K1
tf43:tensorflow Serving gRPC 部署实例
版权声明:本文为博主原创文章,未经博主允许不得转载。有问题可以加微信:lp9628(注明CSDN)。 https://blog.csdn.net/u014365862/article/details/81009551
MachineLP
2019/05/26
2.6K1
行人检测--OpenCV与TensorFlow SSD对比
OpenCV行人检测我们使用HOG特征提取+SVM训练,使用默认API检测,详细了解可参考:https://zhuanlan.zhihu.com/p/75705284
Color Space
2020/01/13
3.4K0
行人检测--OpenCV与TensorFlow SSD对比
TensorFlow 智能移动项目:11~12
在前九章中,我们使用 TensorFlow Mobile 在移动设备上运行各种由 TensorFlow 和 Keras 构建的强大的深度学习模型。 正如我们在第 1 章,“移动 TensorFlow 入门”中提到的那样,Google 还提供了 TensorFlow Lite(可替代 TensorFlow Mobile 的版本)在移动设备上运行模型。 尽管自 Google I/O 2018 起它仍在开发人员预览中,但 Google 打算“大大简化开发人员针对小型设备的模型定位的体验。” 因此,值得详细研究 TensorFlow Lite 并为未来做好准备。
ApacheCN_飞龙
2023/04/24
4.6K0
TensorFlow 智能移动项目:11~12
相关推荐
将 TensorFlow 训练好的模型迁移到 Android APP上(TensorFlowLite)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档