最近在看Peter Harrington写的“机器学习实战”,这是我的学习心得,这次是第13章 - 利用PCA来简化数据。 这里介绍,机器学习中的降维技术,可简化样品数据。
协方差用于衡量两个变量的总体误差. \begin{align} cov(X, Y) & = E[(X-E(X))(Y-E(Y))] \\ & = E[XY] - E[X]E[Y] \end{align} \\ where \\ \qquad E(X): mean(X)
a * b = [a_{11}b_{11} + a_{12}b_{21} + ... + a_{1n}b_{n1}, ..., a_{11}b_{1m} + a_{12}b_{2m} + ... + a_{1n}b_{nm}] \\ a * b^T = [a_{11}b_{11} + a_{12}b_{12} + ... + a_{1n}b_{1n}, ..., a_{11}b_{1m} + a_{12}b_{2m} + ... + a_{1n}b_{nm}] \\ where \\ \qquad \text{a: a is a n-dimensions vector.} \\ \qquad \text{b: b is a m * n of matrix).}