首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >COLING 2018 ⽤对抗增强的端到端模型⽣成合理且多样的故事结尾

COLING 2018 ⽤对抗增强的端到端模型⽣成合理且多样的故事结尾

作者头像
zenRRan
发布于 2019-11-19 13:11:19
发布于 2019-11-19 13:11:19
4410
举报

授权转载自 哈工大SCIR 公众号

主编:车万翔

副主编: 张伟男,丁效

责任编辑: 张伟男,丁效,赵森栋,刘一佳

编辑: 李家琦,赵得志,赵怀鹏,吴洋,刘元兴,蔡碧波,孙卓

本⽂介绍哈尔滨⼯业⼤学社会计算与信息检索研究中⼼( SCIR)录⽤于COLING 2018的论⽂《 Generating Reasonable and Diversified Story Ending Using Sequence to Sequence Model with Adversarial Training》中的⼯作。本⽂提出⽤对抗训练增强的Seq2Seq模型来⽣成合理且多样化的故事结尾。⼈⼯和⾃动评估指标表明,相⽐于仅仅使⽤最⼤似然估计训练的端到端模型,对抗训练增强的端到端模型能够⽣成合理且多样化的故事结尾。

论⽂作者:李忠阳,丁效,刘挺

关键词:端到端模型,⽣成对抗⽹络,故事结尾⽣成

联系邮箱: zyli@ir.hit.edu.cn

1. 任务

图1. 故事结尾⽣成任务介绍

本文要解决的问题是故事结尾生成。如图1所示,给出一个故事上下文,有两种得到故事正确结尾的任务类型。一是基于故事上下文用生成模型直接生成一个逻辑合理的故事结尾;二是从故事结尾候选中通过常识推理挑选一个合理的故事结尾。本文主要关注第一类任务,即用生成模型生成一个逻辑合理的故事结尾。

在本⽂的任务设置中,给出故事上下⽂,很⾃然地可以使⽤Seq2Seq模型来⽣成故事结尾。然⽽,通常的Seq2Seq模型仅仅使⽤最⼤似然估计进⾏训练。在某些任务中,这种训练⽅式是合理的,例如机器翻译,因为给出了⻩⾦标准答案;这些任务的⽬标就是⽣成与⻩⾦标准答案最为接近的句⼦。然⽽,在故事结尾⽣成任务中,仅仅使⽤最⼤似然估计并不是最优的训练⽬标,因为给出⼀个故事上下⽂,合理、正确的故事结尾并不唯⼀。另一方面,仅仅使用最大似然训练的Seq2Seq模型通常会生成一些高频却无意义的词语或短语,这也是语言生成模型中一个非常棘手的问题。例如,"go to hospital"和"go to the church"在训练集中出现频率很高,Seq2Seq模型就倾向于生成这些短语,尽管他们与故事上下文没有任何关联。因此,探索生成合理且多样的故事结尾的新方法是非常有必要的。本⽂借鉴了⽣成对抗⽹络的思想,提出⽤对抗训练增强的Seq2Seq模型来⽣成合理且多样化的故事结尾。实验评估表明使用该策略后,人类合理性平均打分提升21.1%,bigram多样性打分提升126.9%。

2. 方法

图2. 对抗训练增强的Seq2Seq模型总图

图2展示了本⽂使⽤的对抗训练增强的Seq2Seq模型框架图。整个模型包含3个部分,⼀个⽣成器: Seq2Seq模型,定义了从故事上下⽂⽣成结尾的策略;⼀个判别器:是⼀个⼆元分类器,⽤于判别结尾是⼈类撰写的还是机器⽣成的;以及⽣成器和判别器之间的对抗训练过程。对抗训练增强的意思是,本⽂的模型并没有完全抛弃最⼤似然训练,⽽是在最⼤似然预训练Seq2Seq模型的基础上,使⽤对抗训练对其进⾏增强。通过这种⽅式,我们希望模型既可以发挥最⼤似然训练的⻓处,可以⽣成通顺流畅、合乎语法的结尾,⼜希望模型能借鉴对抗训练的优势,能够⽣成逻辑合理、更加多样的结尾。

2.1 Seq2Seq模型作为⽣成器

如公式1所示,给出⼀个故事上下⽂

作为输⼊,⽣成器定义了⼀个输出Y上的分布,并基于softmax依次⽣成故事结尾的每⼀个单词,直到⽣成句⼦结束符EOS。柱搜索被⽤于下⼀个单词的预测过程中。

公式 1

2.2 基于层次化句⼦Embedding的判别器

通过对抗训练,本⽂想要⽣成逻辑合理且多样的故事结尾。我们引⼊了⼀个判别器来判断输⼊是⼈类撰写的,还是机器⽣成的。判别器是⼀个⼆元分类器,本⽂采⽤了⼀个层次化句⼦embedding⽅法来学习故事的表示,然后将其送⼊⼀个⼆元softmax层来得到分类为人类⽣成结尾的概率。这个概率值就是reward,模型将此信号传递给⽣成器以帮助调节其参数。

2.3 对抗训练过程

在对抗训练过程中,期望判别器能⽣成⽆法与⼈类撰写的结尾相区分的结尾,本⽂采⽤了策略梯度⽅法来达到这样的⽬标。如公式2所示,判别器给出R+({X,Y})作为⽣成器的奖励,然后⽣成器使⽤REINFORCE算法来最⼤化⽣成结尾的期望奖励。θ表示⽣成器的参数集合。

公式2

对于每⼀个机器⽣成的故事结尾Y,判别器给出⼀个打分R+({X,Y})。公式2对θ的梯度计算如公式3所示,可以被⽤来更新⽣成器的参数。

公式3

为了得到对抗训练增强的⽣成器,本⽂⾸先使⽤最⼤似然在训练集上训练⼀个Seq2Seq模型,然后预训练⼀个判别器(⼈类撰写的故事作为正例,机器⽣成的结尾加故事上下⽂作为负例),之后再采⽤⽣成器和判别器迭代训练的⽅式。最后,就能得到对抗训练增强的Seq2Seq⽣成器。

3. 实验

3.1 数据集

本⽂使⽤的数据集是ROCStories数据集。训练集中每⼀个样例都是5句话组成的⼩故事,开发集和测试集中每⼀个样例包含⼀个4句话组成的故事上下⽂,以及⼀对⼀错两个故事结尾。详细的数据集统计详⻅表1。

表1. 数据集统计

3.2 实验结果

表2~5 中展示了本⽂的实验结果。

表2. 100条随机挑选的故事结尾的⼈⼯评估结果

从表2中可以看出,对抗训练增强的Seq2Seq模型取得了更好的故事结尾⽣成打分( 1.78),⽐仅仅使⽤MLE训练的Seq2Seq模型( 1.47)提升了21%。对于Perfect和Good等级,对抗增强的Seq2Seq模型表现更好;⽽且在Perfect等级上,对抗增强的Seq2Seq模型领先了10个百分点。

表3. Pairwise模型对⽐

在表3的结果中,我们直接⽐较了对抗训练增强的Seq2Seq模型和仅仅使⽤MLE训练的Seq2Seq模型⽣成结尾的好坏。可以发现,对抗训练增强的Seq2Seq模型在49%的情况下,都⽣成了更好的结尾。⽽仅仅使⽤MLE训练的Seq2Seq模型只在33%的情况下⽣成了更好的结尾。

表4. 故事结尾多样性评估结果。 UnigramDiv和BigramDiv分别是不同的unigram数和bigram数除以⽣成的单词总数

表4中展示了⽣成故事结尾的多样性评估结果。从中可以发现,对抗训练增强的Seq2Seq模型可以⽣成更加多样的故事结尾。

表5. 测试集上Story Cloze Test实验结果

此外,本⽂也在故事结尾挑选的任务上对⽐了⼀些基线⽅法。从表5中可以看出,最好的基线⽅法CGAN只取得了60.9%的结果。 Seq2Seq-MLE取得了与DSSM相近的实验结果,⽽对抗训练增强的Seq2Seq模型取得了最⾼的准确率为62.6%。实际上,所有的基线⽅法都不能⽣成故事结尾,他们均通过直接⽐较相似度的⽅法挑选故事结尾。⽽本⽂的⽅法从⽣成的⻆度来解决挑选问题:本⽂⾸先使⽤⽣成模型⽣成真实的故事结尾,然后通过⽐较⽣成结尾和候选结尾的相似性进⾏挑选。对于读者来说,这种⽅法可解释性更好,因为读者可以通过阅读⽣成的结尾和候选结尾来理解是如何挑选出正确结尾的。

4. 结论

故事⽣成是⼈⼯智能中⼀个⾮常具有挑战性的任务。给出⼀个故事上下⽂,本⽂探索了⽣成故事结尾的新⽅法。具体地,我们采⽤了⽣成对抗⽹络的思想,提出⽤对抗训练增强的Seq2Seq模型来⽣成合理且多样化的故事结尾。⼈⼯和⾃动评估指标表明,相⽐于仅仅使⽤最⼤似然估计训练的Seq2Seq模型,对抗训练增强的Seq2Seq模型能够⽣成合理且多样化的故事结尾。


本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-08-14,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 深度学习自然语言处理 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
学界 | 用生成对抗网络解决NLP问题:谷歌大脑提出MaskGAN
选自arXiv 作者:William Fedus等 机器之心编译 参与:Jane W、李泽南 生成对抗网络(GAN)自推出以来,在计算机视觉领域中引起了一股风潮,在自然语言处理中却鲜有研究。看来,这或许需要 GAN 的提出者 Ian Goodfellow 自己来推动。谷歌大脑 William Fedus、Ian Goodfellow 和 Andrew M. Dai 共同提交的论文中,研究人员使用 GAN 和强化学习方法在 NLP 中做了自己的探索。目前,该论文已提交至 ICLR 2018 大会。 前言 循
机器之心
2018/05/11
1.1K0
斯坦福李纪为博士毕业论文:让机器像人一样交流
选自GitHub 机器之心编译 自然语言处理(NLP)是人工智能领域下的一个庞大分支,其中面临很多机遇与挑战。斯坦福大学李纪为博士在他的毕业论文《Teaching Machines to Converse》中对 NLP 领域近期的发展进行了解读。这篇博士论文从多个方面尝试解决如今对话系统面临的诸多问题:(1) 如何产生具体、贴切、有意思的答复;(2) 如何赋予机器人格情感,从而产生具有一致性的回复;(3) 最早提出使用对抗性学习方法来生成与人类水平相同的回复语句——让生成器与鉴别器不断进行类似「图灵测试」
机器之心
2018/05/10
1.3K0
学界 | ACL论文精彩论文演讲:simGAN+domain tag训练出表现优异的半监督问答模型(图文全文)
AI 科技评论按:虽然ACL 2017已经落下帷幕,但对精彩论文的解读还在继续。下面是 AI 科技评论在ACL现场记录的Zhilin Yang的报告。Zhilin Yang 是卡耐基·梅隆大学计算机学院语言技术研究院的一名博士生,William W. Cohen和Ruslan Salakutdinov两位大牛的高徒。 目前,QA对数据集的获取需要人工标注,这往往代价比较大。Z Yang他们提出了一种半监督的Generative Domain-Adaptive Nets模型,通过引入GAN和domain ta
AI科技评论
2018/03/13
9910
学界 | ACL论文精彩论文演讲:simGAN+domain tag训练出表现优异的半监督问答模型(图文全文)
清华黄民烈朱小燕等提出ARAML,文本生成训练稳定性能新SOTA
论文链接:https://arxiv.org/pdf/1908.07195v1.pdf
机器之心
2019/09/10
7480
清华黄民烈朱小燕等提出ARAML,文本生成训练稳定性能新SOTA
ICLR 2020 满分论文 | 额外高斯先验目标,缓解负多样性无知
International Conference on Learning Representations(ICLR)(国际学习表征会议)是深度学习的顶级会议。ICLR 2020将于2020年 4 月 26 日在埃塞俄比亚首都亚的斯亚贝巴举行,本届会议共收到2594篇论文,有687篇被接收,其中48篇orals,108篇spotlights和531篇poster。在这687篇被录用的文章中有34篇是满分论文。上海交通大学计算机系智能交互与认知工程、上海高校重点实验室赵海教授及其合作者的论文被评为ICLR2020满分论文之一。
AI科技评论
2020/01/16
6860
ICLR 2020 满分论文 | 额外高斯先验目标,缓解负多样性无知
要合作,不要对抗!无需预训练超越经典算法,上交大提出合作训练式生成模型CoT
---- 新智元专栏 作者:卢思迪 上海交通大学 【新智元导读】上海交通大学APEX实验室研究团队提出合作训练(Cooperative Training),通过交替训练生成器(G)和调和器(M),无需任何预训练即可稳定地降低当前分布与目标分布的JS散度,且在生成性能和预测性能上都超越了以往的算法。对于离散序列建模任务来说,该算法无需改动模型的网络结构,同时计算代价较理想,是一种普适的高效算法。本文是论文第一作者卢思迪带来的解读。 论文地址:https://arxiv.org/pdf/1804.
新智元
2018/04/24
9690
要合作,不要对抗!无需预训练超越经典算法,上交大提出合作训练式生成模型CoT
CopyNet、SeqGAN、BERTSUM…你都掌握了吗?一文总结文本摘要必备经典模型(一)
机器之心专栏 本专栏由机器之心SOTA!模型资源站出品,每周日于机器之心公众号持续更新。 本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。 本文将分 2 期进行连载,共介绍 17 个在文本摘要任务上曾取得 SOTA 的经典模型。 第 1 期:CopyNet、SummaRuNNer、SeqGAN、Latent Ex
机器之心
2022/10/10
1.6K0
CopyNet、SeqGAN、BERTSUM…你都掌握了吗?一文总结文本摘要必备经典模型(一)
三角兽首席科学家分享实录:基于对抗学习的生成式对话模型
主讲人:三角兽首席科学家 王宝勋 颜萌 整理编辑 量子位 出品 | 公众号 QbitAI 对抗学习和对话系统都是近年来的新热点。今年7月,三角兽研究组与哈工大ITNLP实验室合作完成的论文被自然语言领
量子位
2018/03/27
7730
三角兽首席科学家分享实录:基于对抗学习的生成式对话模型
生成对抗网络的发展与挑战
生成对抗网络(Generative adversarial network,GAN)由生成模型和判别模型构成,生成模型获取真实数据的概率分布,判别模型判断输入是真实数据还是生成器生成的数据,二者通过相互对抗训练,最终使生成模型学习到真实数据的分布,使判别模型无法准确判断输入数据的来源。生成对抗网络为视觉分类任务的算法性能的提升开辟了新的思路,自诞生之日起至今已经在各个领域产生了大量变体。
一点人工一点智能
2023/08/25
9770
生成对抗网络的发展与挑战
拿到参考资料的预训练模型,太可怕了!
NewBeeNLP公众号原创出品 公众号专栏作者 @Maple小七 北京邮电大学·模式识别与智能系统 今天和大家分享 Facebook 发表于 NeurIPS 2020 的工作,既然『
NewBeeNLP
2021/01/08
2K0
Yoshua Bengio 提出全新 GAN 训练法,大幅提升样本生成
【新智元导读】Yoshua Bengio 的团队提出用于训练 GAN 的新算法,在每次更新的训练中,训练一个生成器以产生位于当前鉴别器的判别边界之上的样本,使用这种算法训练的 GAN 被称为 BS-G
新智元
2018/03/27
1.1K0
Yoshua Bengio 提出全新 GAN 训练法,大幅提升样本生成
【干货】RL-GAN For NLP: 强化学习在生成对抗网络文本生成中扮演的角色
【导读】本文全面系统性梳理介绍了强化学习用于发掘GAN在NLP领域的潜力,请大家阅读。 专知公众号转载已获知乎作者SCUT 胡杨授权。 原文地址:https://zhuanlan.zhihu.com/p/2916880 1. 基础:文本生成模型的标准框架 文本生成(Text Generation)通过 机器学习 + 自然语言处理 技术尝试使AI具有人类水平的语言表达能力,从一定程度上能够反应现今自然语言处理的发展水平。 下面用极简的描述介绍一下文本生成技术的大体框架,具体可以参阅各种网络文献(比如:CSDN
WZEARW
2018/04/08
5.2K0
【干货】RL-GAN For NLP: 强化学习在生成对抗网络文本生成中扮演的角色
贝叶斯生成对抗网络(GAN):当下性能最好的端到端半监督/无监督学习
【新智元导读】康奈尔大学研究员结合贝叶斯和对抗生成网络,在6大公开基准数据集上实现了半监督学习的最佳性能,同时,这也是迈向终极无监督式学习的一大步。研究提出了一个实用的贝叶斯公式,用GAN来进行无监督学习和半监督式学习。这种新提出的方法,简洁性是其最大的优势——推理是直接进行的、可解释的、稳定的。所有的实验结果的获得,都不需要参数匹配,正则化或者任何的特别(ad-hoc)技巧。 康奈尔大学的 Andrew Gordon Wilson 和 Permutation Venture 的 Yunus Saatch
新智元
2018/03/28
1.9K0
贝叶斯生成对抗网络(GAN):当下性能最好的端到端半监督/无监督学习
当深度学习遇见自动文本摘要
本文介绍了深度神经网络在自动文本摘要任务中的研究进展。首先介绍了自动文本摘要任务的基本概念,然后详细阐述了基于深度神经网络的自动文本摘要方法,包括基于抽取式摘要和基于生成式摘要的方法。最后,文章对自动文本摘要方法的未来发展方向进行了探讨。
腾讯云开发者社区
2017/07/25
11.4K2
当深度学习遇见自动文本摘要
生成对抗网络在提升训练数据多样性中的潜力与限制
文章链接:https://cloud.tencent.com/developer/article/2473905
一键难忘
2024/12/05
1.6K0
生成对抗网络在提升训练数据多样性中的潜力与限制
生成对抗网络(Generative Adversarial Networks)
传统的生成指的是生成图像数据,生成有两种策略,一种是直接估计概率密度函数,机器学习模型分为两类一类是判别式模型,一类是生成式模型,生成模型是基于联合概率,判别性模型基于条件概率,生成式模型判别的是一种共生关系,判别式判别的是一种因果关系。知己估计概率密度函数生成的是概率密度函数或者概率密度函数的参数。另一种是绕开直接估计概率密度函数,直接学习数据样本生成的过程,里面没有显式函数的学习。第一种方式比较直观,但有的情况下直接生成数据样本更合适,可以避开显式概率密度函数的估计和设计,直接达到目的。
狼啸风云
2019/12/20
9.9K0
生成对抗网络(Generative Adversarial Networks)
业界 | Petuum提出深度生成模型统一的统计学框架
选自Medium 作者:Zhiting Hu 机器之心编译 参与:刘晓坤、路、邹俏也 Petuum 和 CMU 合作的论文《On Unifying Deep Generative Models》提出深度生成模型的统一框架。该框架在理论上揭示了近来流行的 GAN、VAE(及大量变体),与经典的贝叶斯变分推断算法、wake-sleep 算法之间的内在联系;为广阔的深度生成模型领域提供了一个统一的视角。7 月份在 ICML 2018 的名为「深度生成模型理论基础和应用」的研讨会将更进一步探讨深度生成模型的研究。
机器之心
2018/05/08
7380
业界 | Petuum提出深度生成模型统一的统计学框架
生成对抗网络
生成式对抗网络(generative adversarial network,GAN)是基于可微生成器网络的另一种生成式建模方法。生成式对抗网络基于博弈论场景,其中生成器网络必须与对手竞争。生成网络直接产生样本 。其对手,判别器网络(dircriminator network)试图区分从训练数据抽取的样本和从生成器抽取的样本。判别器出发由 给出的概率值,指示x是真实训练样本而不是从模型抽取的伪样本的概率。
狼啸风云
2019/10/26
1.4K0
模拟上帝之手的对抗博弈——GAN背后的数学原理
作者:李乐 CSDN专栏作家 简介 深度学习的潜在优势就在于可以利用大规模具有层级结构的模型来表示相关数据所服从的概率密度。从深度学习的浪潮掀起至今,深度学习的最大成功在于判别式模型。判别式模型通常是将高维度的可感知的输入信号映射到类别标签。训练判别式模型得益于反向传播算法、dropout和具有良好梯度定义的分段线性单元。然而,深度产生式模型相比之下逊色很多。这是由于极大似然的联合概率密度通常是难解的,逼近这样的概率密度函数非常困难,而且很难将分段线性单元的优势应用到产生式模型的问题。 基于以上的观察,作者
用户1737318
2018/07/20
1.2K0
关于GAN的灵魂七问
生成对抗网络在过去一年仍是研究重点,我们不仅看到可以生成高分辨率(1024×1024)图像的模型,还可以看到那些以假乱真的生成图像。此外,我们还很兴奋能看到一些新的生成模型,它们能生成与 GAN 相媲美的图像,其主要代表就是流模型 Glow。
机器之心
2019/04/29
5380
关于GAN的灵魂七问
推荐阅读
相关推荐
学界 | 用生成对抗网络解决NLP问题:谷歌大脑提出MaskGAN
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档