Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >业界 | 谷歌和 OpenAI 强强联手找到了神经网络「黑盒子」的正确打开方式!

业界 | 谷歌和 OpenAI 强强联手找到了神经网络「黑盒子」的正确打开方式!

作者头像
AI科技评论
发布于 2019-06-23 12:10:29
发布于 2019-06-23 12:10:29
6090
举报
文章被收录于专栏:AI科技评论AI科技评论

AI 科技评论按:现代神经网络经常被吐槽为「黑盒子」。尽管它们在各类问题上都取得了成功,但我们仍无法直观地理解它们是如何在内部做出决策的。随着人工智能系统被应用到更多重要的场景中,更好地了解其内部决策过程将有助于研究者能够及时发现其中的缺陷和错误。对此,谷歌 AI 研究院与 OpenAI 一起合作提出了能够弄清这个「黑盒子」里面到底有什么的新方法——激活图集。谷歌在博客上发布文章介绍了这一意义重大的成果,AI 科技评论编译如下。

神经网络已成为图像相关计算任务中的实际标准,目前已被部署在多种场景中:从自动标记图像库中的照片到自动驾驶系统,我们都能看到神经网络的身影。鉴于机器学习系统的在执行方面的准确性比不使用机器学习、直接由人为设计的系统更好,机器学习系统开始变得无处不在。但是,由于这些系统所了解的基本信息都是在自动训练过程中学习到的,因此我们对于网络处理其给定任务的整个过程的了解,有时仍然隔着一层纱。

近期,经过与 OpenAI 同事的通力合作,我们在发表的《用激活图集探索神经网络》论文中(「Exploring Neural Networks with Activation Atlases」,论文地址:https://distill.pub/2019/activation-atlas)论文中,描述了一种新技术,旨在帮助回答「给定一张图像时,图像分类的神经网络能“看到”什么」的问题。激活图集提供了一种融入卷积视觉网络的新方法,为网络的隐藏层内部提供了一个全局的、层级化和可解释的概念综述。我们认为,激活图集揭示了机器针对图像学到的字母表,即一系列简单、基础的概念,它们被组合并重组进而形成更复杂得多的视觉概念。同时,我们还开源了部分 jupyter notebooks 的代码,以期帮助开发者们开始制作自己的激活图集。

InceptionV1 视觉分类网络其中一层的激活图的详细视图。它展示了网络用于对图像进行分类的许多视觉检测器,例如不同类型的水果状纹理,蜂窝图案和类似织物的纹理。

下面显示的激活图集是根据在 ImageNet 数据集上训练的卷积图像分类网络 Inceptionv1 构建的。通常,给分类网络输入一张图像,然后令其标记出该图像属于 1000 个预定类别中的哪一类,例如「意大利面」,「通气管」或「煎锅」。为此,我们通过一个约十层的网络来评估图像数据,该网络每层由数百个神经元组成,且对于不同类型的图块,每个神经元在图像块的激活程度不同。某层中的一个神经元可能对「狗耳朵」图像块的激活程度更大,而另一层的另一个神经元可能会对高对比度的「垂直线」图像更敏感。

我们从一百万张图像的神经网络的每个层中收集到了内部激活图,并构建了一套激活图集。这些激活图由一组复杂的高维向量表示,通过 UMAP 投影到有用的二维布局中,其中 UMAP 是一种保持原始高维空间局部结构的降维技术。

这就需要组织激活向量,并且因为激活图太多而无法一目了然,所以我们也需要将它们整合成一个更易于管理的数量。为此,我们在之前创建的 2D 布局上提前绘制好了网格。对于网格中的每个单元格,我们对位于其边界内的所有激活取均值,并使用特征可视化来创建图标表示。

左:通过网络输入一组一百万张随机图像,每个图像收集一个随机空间激活图。中间:通过 UMAP 提供激活以将其降维到二维。然后绘制,相似的激活图彼此临近。右:然后我们绘制一个网格,对一个单元格内的激活取均值,并对平均激活做特征转置。

下面我们可以看到仅一层神经网络的激活图集(请记住,这些分类模型可以有六个或更多层)。它显示了在该层,网络在做图像分类时学到的一般视觉概念。这张图集第一眼看上去气势如虹——感觉很多东西在一起涌过来!这种多样性反映了模型所演化出来的各种视觉抽象和概念。

总览多层(mixed4c)Inceptionv1 网络中其中一层的的激活图集。它大约是整个网络的一半。

在这个细节中,我们可以看到不同类型的叶子和植物的探测器

在这里,我们可以看到不同的水,湖泊和沙洲探测器。

在这里,我们看到不同类型的建筑物和桥梁。

正如我们前面提到的,该网络中还有更多层。让我们看一下这个层之前的层,并深入网络中探索视觉概念是如何变得更加细化的(每个层在前一层的激活顶部构建其激活)。

在前面的一层——mixed4a 中,有一个模糊的「哺乳动物」区域。

通过网络的下一层,mixed4b,动物和人类已被分离开,中间出现了一些水果和食物。

通过层 mixed4c,这些概念被进一步细化并区分为小「半岛」。

在这里,我们已经看到了从一层发展到另一层的全局构架,但每个概念在层的发展过程中也变得更加具体和复杂。如果我们聚焦于有助于特定分类的三层区域,比如「白菜」,我们可以清楚地看到这一点。

左图:与其他图层相比,这个早期图层发特征非常不突出。中心:在中间层,图像完全与叶子类似,但它们可以是任何类型的植物。右图:在最后一层,图像非常明显像卷心菜,它们的叶子弯曲成圆形球。

这里还有另一个值得注意的现象:当你从一层到另一层移动时,不仅概念被细化,还会出现旧概念组合之外的新概念。

您可以看到,在 mixed4c(左和中)中,沙子和水是完全不同的概念,两者都有被分类为「沙洲」的明显属性。将其与后一层(右),mixed5b 进行对比,以上两种概念似乎被融合为了一个激活图。

除了放大特定图层整个激活图集的某些区域外,我们还可以在 ImageNet 中仅为 1000 个类中的一类创建特定图层的图集。下面将展示网络分类任务中的常用概念和探测器,例如「红狐狸」。

这里,我们可以更清楚地看到网络正在用什么标准来分类「红狐狸」。他们有尖尖的耳朵,被红色的皮毛包围的白色嘴鼻,以及繁茂树木或雪域的背景。

这里,我们可以看到「瓦屋顶」探测器的许多不同尺度和角度。

对于「野山羊」,我们看到了角和棕色皮毛的探测器,还有我们可能会发现这些动物的环境,如岩石山坡。

像瓦片屋顶的探测器一样,「朝鲜蓟」也有许多不同大小的探测器,用于探测朝鲜蓟的纹理,但我们也有一些紫色的花探测器,它们可能是检测朝鲜蓟植物的花朵。

这些图集不仅揭示了模型中细微的视觉抽象概念,而且还揭示了高层次的误解。例如,通过查看「大白鲨」的激活图集,我们可以看到水和三角形的鳍(正如预期的那样),但我们也会看到看起来像棒球的东西。这暗示了这个研究模型所采用的捷径,它将红色棒球与大白鲨的张开嘴混合在一起。

我们可以用棒球图像的补丁来测试这一点,以将模型的特定图像的分类从「灰鲸」切换为「大白鲨」。

我们希望激活图集能成为一种使机器学习更易于理解且解释性更强的技术的有用工具。为了帮助开发者入门,我们还发布了部分 jupyter notebooks 代码(https://github.com/tensorflow/lucid#activation-atlas-notebooks),通过单击 colab(https://colab.research.google.com/) 就能立即在浏览器中执行程序。它们创建的基础就是之前发布的工具包 Lucid,其中包括了许多其他可解释性可视化技术的代码。很期待各位能有所发现!

via:https://ai.googleblog.com/2019/03/exploring-neural-networks.html

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2019-06-20,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI科技评论 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Google联合OpenAI揭秘神经网络黑箱:AI的智慧,都藏在「激活地图」里
现在,Google和OpenAI的一场合作,以图像分类神经网络为例,我们揭开了神经网络黑箱的一角。
量子位
2019/04/23
6320
Google联合OpenAI揭秘神经网络黑箱:AI的智慧,都藏在「激活地图」里
揭开黑盒一角!谷歌联合OpenAI发布“神经元显微镜”,可视化神经网络运行机制
虽然机器视觉系统在越来越多的领域得到应用,从医疗保健到自动驾驶汽车,但是要真的理解机器的眼睛到底是如何“看到”事物,为什么它将甲归类为行人,但将乙归类为路标,仍然是一个迷。
大数据文摘
2019/03/18
7580
揭开黑盒一角!谷歌联合OpenAI发布“神经元显微镜”,可视化神经网络运行机制
揭开黑盒一角!OpenAI发布“显微镜”,可视化神经网络内部结构
躺尸接近三个月的OpenAI博客终于有了更新,这次它为AI研究者带来的作品是“OpenAI Microscope”,中文译名OpenAI 显微镜。
AI科技评论
2020/04/20
4780
揭开黑盒一角!OpenAI发布“显微镜”,可视化神经网络内部结构
谷歌大脑发布神经网络的「核磁共振」,并公开相关代码
作者:杨晓凡、camel、思颖、杨文 AI 科技评论按:神经网络的可解释性一直是所有研究人员心头的一团乌云。传统的尝试进行可解释性研究的方法是通过查看网络中哪个神经元被激发来来理解,但是即使我们知道「第 538 号神经元被激发了一点点」也毫无意义,并不能帮助我们理解神经元在网络中的意义。为了解决这样的问题 Google Brain 的一些研究人员开发了神经网络特征可视化方法。 2015 年上半年的时候,谷歌大脑的人员就尝试将神经网络理解图像并生成图像的过程进行可视化。随后他们开源了他们的代码 DeepDre
AI科技评论
2018/03/12
8050
谷歌大脑发布神经网络的「核磁共振」,并公开相关代码
OpenAI 开源新的深层神经网络神经元可视化库 Microscope和 Lucid
可解释性是深度学习中最具挑战性的方面之一。理解一个神经网络,它有成千上万的神经元分布在数千个隐藏层中。大多数深层神经网络的互联性和复杂性使其不适合于传统的调试工具。
deephub
2020/05/09
7470
OpenAI 开源新的深层神经网络神经元可视化库 Microscope和 Lucid
CNN 究竟“看”到了什么?曲线检测器是否为可解释性带来了出路?
随着深度学习研究步入深水区,人们逐渐从简单地应用 CNN 转向对其内在视觉机理与可解释性的探究。本文是一篇来自 OpenAI 研究团队的实验性论文,从数据、可视化、归因分析等方面全面分析了 CNN 神经元中的曲线检测机制,是一篇利用神经科学原理研究深度学习技术的精彩范例。
AI科技评论
2020/07/22
1.3K0
CNN 究竟“看”到了什么?曲线检测器是否为可解释性带来了出路?
破解黑盒?谷歌让你理解机器如何“思考”
AiTechYun 编辑:xiaoshan 在2015年,谷歌曾尝试去想象神经网络如何理解产生了迷幻图像的图像。不久之后,谷歌把其代码开源为“DeepDream”,它发展成为一个小型的艺术运动,产生各
AiTechYun
2018/03/27
9890
破解黑盒?谷歌让你理解机器如何“思考”
神经网络可解释性最新进展
【导读】近日,Google在distill发表文章“The Building Blocks of Interpretability” 探讨了特征可视化如何与其他神经网络的解释性技术结合起来,从而帮助人们理解神经网络如何做出决策。同时,Google还公布一套基于DeepDream打造的神经网络可视化库——Lucid,用于制作清晰的特征可视化图像。本文对文章细节进行整理和介绍,文末给出了相关博客、视频和GitHub链接。 2015年,谷歌曾尝试去弄清神经网络理解图像的方式,结果产生了迷幻图像(psychedel
WZEARW
2018/04/08
1.5K0
神经网络可解释性最新进展
卷积神经网络的“封神之路”:一切始于AlexNet
现在,我打开Google Photos,输入“海滩”,就能查看我过去10年里去过的所有海滩的照片。我从来没有浏览过我的照片,也没有一张张给它们贴标签;相反,谷歌是根据照片本身的内容来识别海滩的。
新智元
2019/01/09
1.4K0
卷积神经网络简介
假设我们想要创建一个能够识别图像中的天鹅的神经网络模型。天鹅具有某些特征,可用于帮助确定天鹅是否存在,例如长颈,白色等。
AI研习社
2019/05/13
1.9K1
卷积神经网络简介
破解AI大脑黑盒迈出新一步!谷歌现在更懂机器,还开源了研究工具
“还认为神经网络是黑盒子?再想想吧 :)” 几个小时前,谷歌AI领域的高级研究科学家Greg Corrado在推特上发出这样一句话。随后,谷歌传奇人物Jeff Dean也跟进转发。 之所以说出略带“挑
量子位
2018/03/20
9260
破解AI大脑黑盒迈出新一步!谷歌现在更懂机器,还开源了研究工具
神经网络电路逆向工程研究
在深度学习的原始叙述中,每个神经元通过组合前一层特征来逐步构建更抽象、有意义的特征。近年来,这种观点受到了一些质疑,但如果我们认真对待它会发生什么?
用户11764306
2025/09/04
590
业界 | 谷歌推出神经网络可视化库Lucid,推进模型的可解释性工作(附GitHub)
选自Google Research Blog 作者:Chris Olah 机器之心编译 参与:路雪、黄小天 近日,谷歌在 distill 上发文《The Building Blocks of Inte
机器之心
2018/05/10
8620
白天鹅黑天鹅灰天鹅?手把手教你用卷积神经网络搞定识别
本文将通过一系列的天鹅图片来解释卷积神经网络(CNN)的概念,并使用CNN在常规多层感知器神经网络上处理图像。
数据派THU
2019/05/09
8690
白天鹅黑天鹅灰天鹅?手把手教你用卷积神经网络搞定识别
PNAS | 理解单个神经元在深度神经网络中的作用
本次报道论文为发表于PNAS的Understanding the role of individual units in a deep neural network。众所周知,深度神经网络擅长查找可解决大型数据集上负责任务的分层表示。人类如何理解这些学习到的表示,这是值得探究的问题。该文章是美国麻省理工学院的David Bau博士等人在该领域的研究成果:首先提出网络剖析方法来识别、可视化和量化深度神经网络中各个神经元的作用,接着剖析了在图像分类和图像生成两种不同类型的任务上训练的网络神经元,最后通过两个应用程序证明了方法的有用性。
DrugOne
2021/07/28
1K0
卷积神经网络(CNN)新手指南
引言 卷积神经网络:听起来像是生物与数学还有少量计算机科学的奇怪结合,但是这些网络在计算机视觉领域已经造就了一些最有影响力的创新。2012年神经网络开始崭露头角,那一年Alex Krizhevskyj在ImageNet竞赛上(ImageNet可以算是竞赛计算机视觉领域一年一度的“奥运会”竞赛)将分类错误记录从26%降低到15%,这在当时是一个相当惊人的进步。从那时起许多公司开始将深度学习应用在他们的核心服务上,如Facebook将神经网络应用到他们的自动标注算法中,Google(谷歌)将其应用到图片搜索
AI科技评论
2018/03/07
8800
卷积神经网络(CNN)新手指南
卷积神经网络
在机器学习中,分类器将类别标签分配给数据点。例如,图像分类器针对图像中存在哪些对象产生类别标签(例如,鸟,飞机)。一个卷积神经网络,或CNN的简称,是一种类型的分类,在解决这个问题,其过人之处!
算法发
2020/07/18
1.2K0
卷积神经网络
深度解析神经网络中每个神经元的使命 | MIT朱俊彦&港中文周博磊力作
今天AI科技评论介绍的这项工作中,MIT朱俊彦团队&港中文周博磊等人主要介绍了对网络的解剖,这个网络框架可以系统地识别图像分类和图像生成网络中各个隐藏单元的语义。
AI科技评论
2020/11/09
6290
深度解析神经网络中每个神经元的使命 | MIT朱俊彦&港中文周博磊力作
卷积神经网络概念与原理
受Hubel和Wiesel对猫视觉皮层电生理研究启发,有人提出卷积神经网络(CNN),Yann Lecun 最早将CNN用于手写数字识别并一直保持了其在该问题的霸主地位。近年来卷积神经网络在多个方向持续发力,在语音识别、人脸识别、通用物体识别、运动分析、自然语言处理甚至脑电波分析方面均有突破。
机器人网
2018/07/23
1.3K0
卷积神经网络概念与原理
从BP神经网络到卷积神经网络:揭秘神经网络如何理解世界
我们正在从BP神经网络过渡到卷积神经网络,需要理解神经网络的核心任务:学习数据中的特征表示并进行预测或分类。
熊猫钓鱼
2025/08/01
1780
从BP神经网络到卷积神经网络:揭秘神经网络如何理解世界
推荐阅读
相关推荐
Google联合OpenAI揭秘神经网络黑箱:AI的智慧,都藏在「激活地图」里
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档