首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >如何识别出轮廓准确的长和宽

如何识别出轮廓准确的长和宽

作者头像
OpenCV学堂
发布于 2018-09-29 10:04:37
发布于 2018-09-29 10:04:37
2.2K00
代码可运行
举报
运行总次数:0
代码可运行

问题来源:实际项目中,需要给出识别轮廓的长度和宽度。初步分析:

轮廓分析的例程为:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
int main( int argc, char** argv )
{
    //read the image
    Mat img = imread("e:/sandbox/leaf.jpg");
    Mat bw;
    bool dRet;
    //resize
    pyrDown(img,img);
    pyrDown(img,img);

    cvtColor(img, bw, COLOR_BGR2GRAY);
    //morphology operation  
    threshold(bw, bw, 150, 255, CV_THRESH_BINARY);
    //bitwise_not(bw,bw);
    //find and draw contours
    vector<vector<Point> > contours;
    vector<Vec4i> hierarchy;
    findContours(bw, contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
    for (int i = 0;i<contours.size();i++)
    {
        RotatedRect minRect = minAreaRect( Mat(contours[i]) );
        Point2f rect_points[4];
        minRect.points( rect_points ); 
        for( int j = 0; j < 4; j++ )
            line( img, rect_points[j], rect_points[(j+1)%4],Scalar(255,255,0),2);
    }
    imshow("img",img);
    waitKey();
    return 0;
}

得到结果:

对于这样 的轮廓分析,标明出来的1和2明显是错误的。但是除了minAreaRect之外,已经没有更解近一步的方法。也尝试首先对轮廓进行凸包处理,再查找外接矩形,效果同样不好。

解题思路: 仍然要从现有的、稳定运行的代码里面找方法。目前OpenCV函数getOrientation能够通过PCA方法找到图像/轮廓的方向。比如这样:

在项目图片上能够得到这样结果:

显然是更符合实际情况的,当然,叶柄这里产生了干扰,但那是另一个问题。 获得主方向后,下一步就是如何获得准确的长和宽。PCA方法无法获得长宽,也尝试通过旋转矩阵的方法直接获得结果:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
////以RotatedRect的方式返回结果
    //RotatedRect box;
    //box.center.x = pos.x;
    //box.center.y = pos.y;
    //box.size.width = flong;
    //box.size.height = fshort;
    //box.angle = (float)atan2( eigen_vecs[0].y, eigen_vecs[0].x)*180/3.1415926; //弧度转角度
    ////绘制rotateRect
    //Point2f rect_points[4];
    //box.points( rect_points ); 
    //for( int j = 0; j < 4; j++ )
    //    line( img, rect_points[j], rect_points[(j+1)%4],Scalar(0,0,255),2);

但是需要注意的是,这里的pca获得的center并不是绝对的center,而且在中线两边,轮廓到中线的长度不一定一样。为了获得最精确的结果,就需要直接去求出每个边的长度,并且绘制出来。思路很简单,就是通过中线(及其中线的垂线)将原轮廓分为两个部分,分别求这两个部分的到中线的最大距离(加起来就是长,分开来就是位置)。求的长轴端点:

求得到中线最远距离点(蓝色),这也就是到中线的距离。

距离的计算很多时候只是点的循环。最后存在一个问题,那就是这样一个图像,已经知道p0-03的坐标,和两条轴线的斜率,如何绘制4个角点?

实际上,这是一个数学问题,并且有解析解:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//通过解析方法,获得最后结果 
Point p[4]; 
p[0].x = (k_long * _p[0].x   - k_short * _p[2].x  +  _p[2].y - _p[0].y)  / (k_long - k_short);
p[0].y = (p[0].x - _p[0].x)*k_long + _p[0].y;
p[1].x = (k_long * _p[0].x   - k_short * _p[3].x  +  _p[3].y - _p[0].y)  / (k_long - k_short);
p[1].y = (p[1].x - _p[0].x)*k_long + _p[0].y;
p[2].x = (k_long * _p[1].x   - k_short * _p[2].x  +  _p[2].y - _p[1].y)  / (k_long - k_short);
p[2].y = (p[2].x - _p[1].x)*k_long + _p[1].y;
p[3].x = (k_long * _p[1].x   - k_short * _p[3].x  +  _p[3].y - _p[1].y)  / (k_long - k_short);
p[3].y = (p[3].x - _p[1].x)*k_long + _p[1].y;

成功!!!

得到最后结果,这正是我想要得到的。但是由于算法稳定性方面和效率的考虑,还需要进一步增强

p.s 重新翻了一下minarearect

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
cv::RotatedRect cv::minAreaRect( InputArray _points )
{
    CV_INSTRUMENT_REGION()

    Mat hull;
    Point2f out[3];
    RotatedRect box;

    convexHull(_points, hull, true, true);

    if( hull.depth() != CV_32F )
    {
        Mat temp;
        hull.convertTo(temp, CV_32F);
        hull = temp;
    }

    int n = hull.checkVector(2);
    const Point2f* hpoints = hull.ptr<Point2f>();

    if( n > 2 )
    {
        rotatingCalipers( hpoints, n, CALIPERS_MINAREARECT, (float*)out );
        box.center.x = out[0].x + (out[1].x + out[2].x)*0.5f;
        box.center.y = out[0].y + (out[1].y + out[2].y)*0.5f;
        box.size.width = (float)std::sqrt((double)out[1].x*out[1].x + (double)out[1].y*out[1].y);
        box.size.height = (float)std::sqrt((double)out[2].x*out[2].x + (double)out[2].y*out[2].y);
        box.angle = (float)atan2( (double)out[1].y, (double)out[1].x );
    }
    else if( n == 2 )
    {
        box.center.x = (hpoints[0].x + hpoints[1].x)*0.5f;
        box.center.y = (hpoints[0].y + hpoints[1].y)*0.5f;
        double dx = hpoints[1].x - hpoints[0].x;
        double dy = hpoints[1].y - hpoints[0].y;
        box.size.width = (float)std::sqrt(dx*dx + dy*dy);
        box.size.height = 0;
        box.angle = (float)atan2( dy, dx );
    }
    else
    {
        if( n == 1 )
            box.center = hpoints[0];
    }

    box.angle = (float)(box.angle*180/CV_PI);
    return box;
}

那么,这个官方函数首先就把轮廓找了hull矩。这个当然对于很多问题都是好方法,很简单直观(我这里的方法就繁琐很多)。但是忽视了一个重要问题:hull变换后,会丢失信息。显然这就是结果不准确的原因。

我也在answeropencv上进行了咨询,berak给出的comment是 maybe: find principal axes of your shape (PCA) rotate to upright (warp) boundingRect() (image axis aligned) 这个显然也不是很妥当,因为这个结果还需要rotate回去,这会很麻烦。 感谢阅读至此,希望有所帮助。

2018年8月29日19:43:01 经过一段时间后反思这个项目,应该说这个算法有一定自创的元素在里面,但是由于这个问题比较小众,所以即使是在answeropencv上面,参与讨论的人也比较少,使得算法有很多不充分的地方在里面:最主要的问题就是在算法的后面部分,多次进行全轮廓循环,使得算法的效率降低。那么,有没有能够提速的方法了?还是之前做的一些数学的研究和在answeropencv上berak的comment提醒了我,注意看:

这里,黑色的是原始的OpenCV的坐标系,红色的是新求出来的坐标系,你花了那么大功夫去算交点,实际上,不如将这个图像旋转为正,将外界矩形算出来,然后再反方向旋转回去。这样的话思路就很清楚了,但是需要花一点修改的时间。但是正是因为这里的思路比较清晰,所以代码写起来,比较流畅,很快我就得到了下面的结果:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
#include "stdafx.h"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/photo.hpp"
using namespace std;
using namespace cv;
#define DEBUG FALSE
//获得单个点经过旋转后所在精确坐标
Point2f GetPointAfterRotate(Point2f inputpoint,Point2f center,double angle){
    Point2d preturn;
    preturn.x = (inputpoint.x - center.x)*cos(-angle) - (inputpoint.y - center.y)*sin(-angle)+center.x;
    preturn.y = (inputpoint.x - center.x)*sin(-angle) + (inputpoint.y - center.y)*cos(-angle)+center.y;
    return preturn;
}
Point GetPointAfterRotate(Point inputpoint,Point center,double angle){
    Point preturn;
    preturn.x = (inputpoint.x - center.x)*cos(-1*angle) - (inputpoint.y - center.y)*sin(-1*angle)+center.x;
    preturn.y = (inputpoint.x - center.x)*sin(-1*angle) + (inputpoint.y - center.y)*cos(-1*angle)+center.y;
    return preturn;
}
double getOrientation(vector<Point> &pts, Point2f& pos,Mat& img)
{
    //Construct a buffer used by the pca analysis
    Mat data_pts = Mat(pts.size(), 2, CV_64FC1);
    for (int i = 0; i < data_pts.rows; ++i)
    {
        data_pts.at<double>(i, 0) = pts[i].x;
        data_pts.at<double>(i, 1) = pts[i].y;
    }
    //Perform PCA analysis
    PCA pca_analysis(data_pts, Mat(), CV_PCA_DATA_AS_ROW);
    //Store the position of the object
    pos = Point2f(pca_analysis.mean.at<double>(0, 0),
        pca_analysis.mean.at<double>(0, 1));
    //Store the eigenvalues and eigenvectors
    vector<Point2d> eigen_vecs(2);
    vector<double> eigen_val(2);
    for (int i = 0; i < 2; ++i)
    {
        eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
            pca_analysis.eigenvectors.at<double>(i, 1));
        eigen_val[i] = pca_analysis.eigenvalues.at<double>(i,0);
    }
    // Draw the principal components
    //在轮廓/图像中点绘制小圆
    //circle(img, pos, 3, CV_RGB(255, 0, 255), 2);
    ////计算出直线,在主要方向上绘制直线
    //line(img, pos, pos + 0.02 * Point2f(eigen_vecs[0].x * eigen_val[0], eigen_vecs[0].y * eigen_val[0]) , CV_RGB(255, 255, 0));
    //line(img, pos, pos + 0.02 * Point2f(eigen_vecs[1].x * eigen_val[1], eigen_vecs[1].y * eigen_val[1]) , CV_RGB(0, 255, 255));
    return atan2(eigen_vecs[0].y, eigen_vecs[0].x);
}
//程序主要部分
int main( int argc, char** argv )
{
    //读入图像,转换为灰度
    Mat img = imread("e:/sandbox/leaf.jpg");
    pyrDown(img,img);
    pyrDown(img,img);
    Mat bw;
    bool dRet;
    cvtColor(img, bw, COLOR_BGR2GRAY);
    //阈值处理
    threshold(bw, bw, 150, 255, CV_THRESH_BINARY);
    //寻找轮廓
    vector<vector<Point> > contours;
    vector<Vec4i> hierarchy;
    findContours(bw, contours, hierarchy, CV_RETR_LIST, CV_CHAIN_APPROX_NONE);
    //轮廓分析,找到
    for (size_t i = 0; i < contours.size(); ++i)
    {
        //计算轮廓大小
        double area = contourArea(contours[i]);
        //去除过小或者过大的轮廓区域(科学计数法表示)
        if (area < 1e2 || 1e5 < area) continue;
        //绘制轮廓
        drawContours(img, contours, i, CV_RGB(255, 0, 0), 2, 8, hierarchy, 0);
        //获得轮廓的角度
        Point2f* pos = new Point2f();
        double dOrient =  getOrientation(contours[i], *pos,img);
        //转换轮廓,并获得极值
        for (size_t j = 0;j<contours[i].size();j++)
            contours[i][j] = GetPointAfterRotate(contours[i][j],(Point)*pos,dOrient);
        Rect rect = boundingRect(contours[i]);//轮廓最小外接矩形
        RotatedRect rotateRect = RotatedRect((Point2f)rect.tl(),Point2f(rect.br().x,rect.tl().y),(Point2f)rect.br());
        //将角度转换回去并绘图
        Point2f rect_points[4];
        rotateRect.points( rect_points ); 
        for (size_t j = 0;j<4;j++)
            rect_points[j] = GetPointAfterRotate((Point)rect_points[j],(Point)*pos,-dOrient);
        for( size_t j = 0; j < 4; j++ )
            line( img, rect_points[j], rect_points[(j+1)%4],Scalar(255,255,0),2);
        //得出结果    
        char cbuf[255];
        double fshort = std::min(rect.width,rect.height);
        double flong  = std::max(rect.width,rect.height);
        sprintf_s(cbuf,"第%d个轮廓,长度%.2f,宽度%.2f像素\n",i,flong,fshort);
    }
    return 0;
}

这段代码中值得一提的是

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
Point GetPointAfterRotate(Point inputpoint,Point center,double angle){
    Point preturn;
    preturn.x = (inputpoint.x - center.x)*cos(-1*angle) - (inputpoint.y - center.y)*sin(-1*angle)+center.x;
    preturn.y = (inputpoint.x - center.x)*sin(-1*angle) + (inputpoint.y - center.y)*cos(-1*angle)+center.y;
    return preturn;
}

这个函数是直接计算出某一个点在旋转后位置,采用的是数学方法推到,应该算自己创的函数。很多时候,我们并不需要旋转整个图像,而只是要获得图像旋转以后的位置。

反思小结:应该说当时answerOpenCV上就给出了正确的结果提示,但是由于那时我钻在自己的算法里面,没能够接受新的想法;过去一段时间后回顾,才发现了更好的解决方法。 但是走弯路并不可怕,只有不断、持续地思考,尽可能将现有的解决方法优化,才可能在面对新的问题的时候有更多的手段、更容易提出创造出“方便书写、效果显著”的算法。 此外,基础能力非常重要,如果基础不牢,在创建新算法 的时候会遇到更多的困难,毕竟:基础不牢、地动山摇。 感谢阅读至此、希望有所帮助。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-08-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 OpenCV学堂 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
C++ OpenCV透视变换综合练习
以前的文章《C++ OpenCV之透视变换》介绍过透视变换,当时主要是自己固定的变换坐标点,所以在想可不可以做一个通过轮廓检测后自适应的透视变换,实现的思路通过检测主体的轮廓,使用外接矩形和多边形拟合的四个最边的点进行透视变换。
Vaccae
2021/01/18
1.2K0
opencv 视觉项目学习笔记(二): 基于 svm 和 knn 车牌识别
    训练数据: 所有训练数据存储再一个 N x M 的矩阵中, 其中 N 为样本数, M 为特征数(每个样本是该训练矩阵中的一行)。这些数据  所有数据存在  xml 文件中, 
用户2434869
2018/10/11
3.2K0
终于可以摆脱OpenCV中Hough圆调参的烦恼了
OpenCV图像项目中,圆的检测很常见。 例如:检测烂苹果的个数,寻找目标靶心,人眼,嘴巴识别等。 其中用到的关键技术是OpenCV中集成的霍夫圆检测函数。 HoughCircles( InputArray image, // 输入图像 ,必须是8位的单通道灰度图像 OutputArray circles, // 输出结果,发现的圆信息 Int method, // 方法 - HOUGH_GRADIENT Double dp,
用户9831583
2022/06/16
3.2K0
终于可以摆脱OpenCV中Hough圆调参的烦恼了
OpenCV中如何获得物体的主要方向
问题来源为网友提供的资料,原文为:《Object Orientation, Principal Component Analysis & OpenCV》
OpenCV学堂
2018/07/26
3.9K0
OpenCV中如何获得物体的主要方向
【从零学习OpenCV 4】轮廓外接多边形
由于噪声和光照的影响,物体的轮廓会出现不规则的形状,根据不规则的轮廓形状不利于对图像内容进行分析,此时需要将物体的轮廓拟合成规则的几何形状,根据需求可以将图像轮廓拟合成矩形、多边形等。本小节将介绍OpenCV 4中提供的轮廓外接多边形函数,实现图像中轮廓的形状拟合。
小白学视觉
2020/02/20
4.1K0
【从零学习OpenCV 4】轮廓外接多边形
OpenCV | 二值图像分析的技巧都在这里
二值图像分析最常见的一个主要方式就是轮廓发现与轮廓分析,其中轮廓发现的目的是为轮廓分析做准备,经过轮廓分析我们可以得到轮廓各种有用的属性信息、常见的如下:
OpenCV学堂
2020/02/21
1.9K0
车牌识别从0到1之C++实现
车牌识别理论不做概述,网上比比皆是,请自行搜索哦。一个纯干货的公众号,断断续续写了一周,贴出代码,供交流学习。
用户9831583
2022/06/16
6070
车牌识别从0到1之C++实现
Halcon实例转OpenCV:计算回形针方向
Halcon中有一个计算回形针方向的实例clip.hdev,可以在例程中找到。原图如下:
Color Space
2020/08/21
1.5K0
Halcon实例转OpenCV:计算回形针方向
二寸照片识别/切边/矫正
大体思路可以描述为Canny边缘检测-形态学闭操作-轮廓检测-Hough直线检测-确定四个角点-透视变换。
周旋
2020/08/11
1.6K0
OpenCV消除高亮illuminationChange函数的使用
上一篇《OpenCV极坐标变换函数warpPolar的使用》中介绍了极坐标变换的使用,文中提到过因为手机拍的照片,部分地方反光厉害。OpenCV本身也有一个消除高亮的函数,今天这篇就是来了解一下消除高亮函数的使用,就结果来说,有效果,但不多。
Vaccae
2023/12/19
2.3K0
OpenCV消除高亮illuminationChange函数的使用
PaddleOCR C++(三)---动态库返回识别结果及矩形位置
《PaddleOCR C++学习笔记(二)》尝试做图像的分割,结果都效果不明显,所以这篇我们从OCR识别这里来处理,将返回的识别字符和对应的识别矩形框都显示出来,用于区分识别的效果。
Vaccae
2021/07/30
2.5K1
PaddleOCR C++(三)---动态库返回识别结果及矩形位置
OpenCV图像处理笔记(三):霍夫变换、直方图、轮廓等综合应用
一、霍夫直线变换 1、霍夫直线变换 Hough Line Transform用来做直线检测 前提条件 – 边缘检测已经完成 平面空间到极坐标空间转换 2、霍夫直线变换介绍 对于任意一条直线上的所有点来说 变换到极坐标中,从[0~360]空间,可以得到r的大小 属于同一条直线上点在极坐标空(r, theta)必然在一个点上有最强的信号出现,根据此反算到平面坐标中就可以得到直线上各点的像素坐标。从而得到直线 3、相关API 标准的霍夫变换 cv::HoughLines从平面坐标转换到霍夫空间,最终输出是
MiChong
2020/09/24
3.3K0
OpenCV图像处理笔记(三):霍夫变换、直方图、轮廓等综合应用
OpenCV 闭合轮廓检测
这个好像是骨头什么的,但是要求轮廓闭合,于是对图片进行一下膨胀操作,再次检测轮廓就好了。
流川疯
2022/11/29
1K0
OpenCV 闭合轮廓检测
【目标跟踪】奇葩需求如何处理(二)
昨天突然接到一个需求,识别井盖且判断是否有井盖或无井盖。而且时间紧急,比赛突然加的需求,只给一天时间。一天时间用深度学习方法大概率是来不及了,采集数据标注数据训练模型都要花时间。
读书猿
2024/03/22
2190
【目标跟踪】奇葩需求如何处理(二)
C#使用OpenCV进行答题卡识别
type表示了矩阵中元素的类型以及矩阵的通道个数,它是一系列的预定义的常量,其命名规则为CV_(位数)+(数据类型)+(通道数),由type()返回,但是返回值是int型,不是OpenCV预定义的宏(CV_8UC1, CV_64FC1…),也就是说你用type函数得到的只是一个int型的数值,比如CV_8UC1返回的值是0,而不是CV_8UC1。
码客说
2022/09/09
3.1K1
C#使用OpenCV进行答题卡识别
OpenCV 轮廓检测
http://blog.sina.com.cn/s/blog_8fc98fe501017ypb.html
流川疯
2022/11/29
1.1K0
OpenCV 轮廓检测
OpenCV实现人脸对齐
OpenCV实现人脸对齐 一:人脸对齐介绍 在人脸识别中有一个重要的预处理步骤-人脸对齐,该操作可以大幅度提高人脸识别的准确率与稳定性,但是早期的OpenCV版本不支持人脸Landmark检测,因此一
OpenCV学堂
2018/04/24
4.4K2
OpenCV实现人脸对齐
Android OpenCV(三十七):轮廓外接多边形
该方法用于求取输入二维点集合的最小外接矩形。返回值为RotateRect对象。RotateRect类型和Rect类型虽然都是表示矩形,但是在表示方式上有一定的区别。通过查看成员变量可以很明显的看到差异。Rect是通过左上角的坐标来定位,默认横平竖直,然后通过宽高确定大小。而RotateRect则是通过center确定位置,angle结合宽高,计算各顶点的坐标,从而确定矩形。
Vaccae
2021/07/07
1.5K0
Android OpenCV(三十七):轮廓外接多边形
OpenCV 对轮廓的绘图与筛选操作总结
OpenCV利用findContours找到图像中的轮廓,根据这些轮廓的特征进行筛选有利于进一步逼近最终的兴趣区域,减少其他算法的时间,提高代码的运行效率,而对轮廓的绘图则可以直观的看到筛选结果。 其
chaibubble
2018/01/02
4.8K0
OpenCV  对轮廓的绘图与筛选操作总结
【C++】OpenCV:车道线检测原理与实现示例
车道线检测是自动驾驶和驾驶辅助系统中的关键任务之一。OpenCV是一个广泛使用的计算机视觉库,可以用来进行车道线检测。
DevFrank
2024/07/24
6540
相关推荐
C++ OpenCV透视变换综合练习
更多 >
领券
一站式MCP教程库,解锁AI应用新玩法
涵盖代码开发、场景应用、自动测试全流程,助你从零构建专属AI助手
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档