Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >概率论12 矩与矩生成函数

概率论12 矩与矩生成函数

作者头像
Vamei
发布于 2018-03-12 09:25:03
发布于 2018-03-12 09:25:03
1.8K00
代码可运行
举报
文章被收录于专栏:Vamei实验室Vamei实验室
运行总次数:0
代码可运行

作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!

我们重新回到对单随机变量分布的研究。描述量是从分布中提取出的一个数值,用来表示分布的某个特征。之前使用了两个描述量,即期望和方差。在期望和方差之外,还有其它的描述量吗?

斜度

值得思考的是,期望和方差足以用来描述一个分布吗?如果答案是可以,那么我们就没有必要寻找其它描述量的。事实上,这两个描述量并不足以完整的描述一个分布。

我们来看两个分布,一个是指数分布:

$$f(x) = \left\{ \begin{array}{rcl} e^{x} & if & x \ge 0 \\ 0 & if & x < 0 \end{array} \right.$$

它的期望为[$E(x) = 1$],方差为[$Var(x) = 1$]。 我们用Y = 2-X来获得一个新的随机变量,及其分布:

$$f(y) = \left\{ \begin{array}{rcl} e^{2-y} & if & y \le 2 \\ 0 & if & y > 2 \end{array} \right.$$ 该密度曲线与原来的密度曲线关于直线X=1对称,与原来的分布有相同的期望值和方差。期望为[$E(x) = 1$],方差为[$Var(x) = 1$]

我们绘制两个分布的密度曲线,如下图:

可以看到,即使期望值和方差保持不变,两个分布曲线明显不同。第一条曲线下的面积偏向左,而第二条曲线则向右侧倾斜。为了表达分布的这一特征,我们引入一个新的描述量,斜度(skewness)。它的定义如下: $$Skew(X) = E[(X - \mu)^3]$$ 上面两个分布,第一条曲线向左偏斜,斜度分别为2。另一条曲线的斜度为-2。很明显,斜度的不同可以带来差别巨大的分布(即使期望和方差都相同)。

绘制程序如下

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
from scipy.stats import expon
import numpy as np
import matplotlib.pyplot as plt

rv = expon(scale = 1)
x1  = np.linspace(0, 20, 100)
x2  = np.linspace(-18, 2, 100)
y1 =  rv.pdf(x1)
y2 =  rv.pdf(2 - x2)

plt.fill_between(x1, y1, 0.0, color = "green")
plt.fill_between(x2, y2, 0.0, color = "coral", alpha = 0.5)

plt.xlim([-6, 8])
plt.title("two distribution")
plt.xlabel("RV")
plt.ylabel("f(x)")

plt.show()

观察方差和斜度的定义, $$Var(X) = E[(X - \mu)^2]$$ $$Skew(X) = E[(X - \mu)^3]$$ 都是X的函数的期望。它们的区别只在于函数的形式,即[$(X - \mu)$]的乘方次数不同。方差为2次方,斜度为3次方。 上面的描述量都可以归为“矩”(moment)的一族描述量。类似于方差和斜度这样的,它们都是[$(X - \mu)$]乘方的期望,称为中心矩(central moment)。[$E[(x - \mu)^k]$]称为k阶中心矩,表示为[$\mu_k$],其中k = 2, 3, 4, ...

还有另一种是原点矩(moment about the origin),是[$X$]乘方的期望。 [$E[X^k]$]称为k阶原点矩,表示为[$\mu_k^\prime$],其中k = 1, 2, 3, ...

期望是一阶原点矩: $$E(X) = E(X^1)$$

矩生成函数

除了表示中心、离散程序、斜度这些特性外,更高阶的矩可以描述分布的其它特性。矩统计中有重要的地位,比如参数估计的一种重要方法就是利用了矩。然而,根据矩的定义,我们需要对不同阶的X幂求期望,这个过程包含复杂的积分过程,并不容易。矩同样催生了矩生成函数(moment generating function),它是求解矩的一样有力武器。

在了解矩生成函数之前,先来回顾幂级数(power series)。幂级数是不同阶数的乘方(比如[$1, x, x^2, x^3...$])的加权总和:

$$\sum_{i=1}^{+\infty} a_ix^i$$

[$a_i$]是一个常数。

幂级数是数学中的重要工具,它的美妙之处在于,解析函数都可以写成幂级数的形式,比如三角函数[$\sin(x)$]可以写成:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + ...$$

将解析函数分解为幂级数的过程,就是泰勒分解(Taylor)。我们不再深入其具体过程。[$x^n$]是很简单的一种函数形式,它可以无限次求导,求导也很容易。这一特性让幂级数变得很容易处理。将解析函数写成幂级数,就起到化繁为简的效果。

(幂级数这一工具在数学上的用途极其广泛,它用于数学分析、微分方程、复变函数…… 不能不说,数学家很会活用一种研究透了的工具)

如果我们将幂级数的x看作随机变量X,并求期望。根据期望可以线性相加的特征,有:

$$E(f(X)) = a_0 + a_1E(X) + a_2E(X^2) + a_3E(X^3) +  ... $$

我们可以通过矩,来计算f(X)的期望。

另一方面,我们可否通过解析函数来获得矩呢?我们观察下面一个指数函数,写成幂级数的形式:

$$e^{tx} = 1 + tx + \frac{(tx)^2}{2!} + \frac{(tx)^3}{3!} + \frac{(tx)^4}{4!} ... $$

我们再次将x看作随机变量X,并对两侧求期望,即

$$E(e^{tX}) = 1 + tE(X) + \frac{t^2E(X^2)}{2!} + \frac{t^3E(X^3)}{3!} + \frac{t^4E(X^4)}{4!} ...$$

即使随机变量的分布确定,[$E(e^{tX})$]的值还是会随t的变化而变化,因此这是一个关于t的函数。我们将它记为[$M(t)$],这就是矩生成函数(moment generating function)。对[$M(t)$]的级数形式求导,并让t等于0,可以让高阶的t的乘方消失,只留下[$E(X)$],即

$$M'(0) = E(X)$$

即一阶矩。如果继续求高阶导,并让t等于0,可以获得高阶的矩。

$$M^{\left( r \right)}(0) = E(X^r)$$

有趣的是,多次求导系数正好等于幂级数系数中的阶乘,所以可以得到上面优美的形式。我们通过幂级数的形式证明了,对矩生成函数求导,可以获得各阶的矩。相对于积分,求导是一个容易进行的操作。

矩生成函数的性质

矩生成函数的一面是幂级数,我们已经说了很多。矩生成函数的另一面,是它的指数函数的解析形式。即

$$M(t) = E[e^{tX}]= \int_{- \infty}^{\infty}e^{tx}f(x)dx$$

在我们获知了f(x)的具体形式之后,我们可以利用该积分获得矩生成函数,然后求得各阶的矩。当然,你也可以通过矩的定义来求矩。但许多情况下,上面指数形式的积分可以使用一些已有的结果,所以很容易获得矩生成函数。矩生成函数的求解矩的方式会便利许多。

矩生成函数的这一定义基于期望,因此可以使用期望的一些性质,产生有趣的结果。

性质1 如果X的矩生成函数为[$$M_X(t)],且[$Y = aX + b$],那么

$$M_Y(t) = e^{at}M_X(bt)$$

(将Y写成指数形式的期望,很容易证明该结论)

性质2 如果X和Y是独立随机变量,分别有矩生成函数[$M_X, M_Y$]。那么对于随机变量[$Z = X + Y$],有

$$M_Z(t) = M_X(t)M_Y(t)$$ 

(基于独立随机变量乘积的期望,等于随机变量期望的乘积)

练习:

推导Poisson分布的矩生成函数

总结

矩生成函数

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2013-12-05 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
概率论13 中心极限定律
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
Vamei
2018/09/25
7790
概率论13 中心极限定律
统计力学中的概率论基础(一)
统计力学是一门通过粒子的纯粹微观量来表示系统宏观量的学科,从统计分布出发,用无偏/有偏估计来研究各种不同的系综。本文内容部分参考自郑伟谋老师所著《统计力学导引》,主要介绍其中概率论基础的部分。但因为大多是个人的理解,如有差错,与参考文献作者无关。
DechinPhy
2024/05/15
1590
矩 / Hu 矩
在数学和统计学中,矩(moment)是对变量分布和形态特点的一组度量。n阶矩被定义为一变量的n次方与其概率密度函数(Probability Density Function, PDF)之积的积分。在文献中n阶矩通常用符号μn表示,直接使用变量计算的矩被称为原始矩(raw moment),移除均值后计算的矩被称为中心矩(central moment)。变量的一阶原始矩等价于数学期望(expectation)、二至四阶中心矩被定义为方差(variance)、偏度(skewness)和峰度(kurtosis)。
为为为什么
2022/08/09
1.8K0
矩 / Hu 矩
概率论基础 - 8 - 大数定理
概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向随机变量各数学期望的算术平均值收敛的定律。 依概率收敛 定义 有 : \lim _{n \rightarrow \infty} P\left\{\left|Y_{n}-a\right| \leq \varepsilon\right\}=1 ​ 则称序列依概率收敛于a,记作: Y_{n} \stackrel{P}{\rightarrow} a 含义 收敛:表明这是一个随机变量序列,而不
为为为什么
2022/08/05
9890
概率论基础 - 8 - 大数定理
概率论10 方差与标准差
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
Vamei
2018/09/25
1.8K0
概率论10 方差与标准差
概率论基础 - 7 - 特征函数
特征函数是随机变量的分布的不同表示形式。 概述 一般而言,对于随机变量X的分布,大家习惯用概率密度函数来描述,虽然概率密度函数理解起来很直观,但是确实随机变量的分布还有另外的描述方式,比如特征函数。 特征函数的本质是概率密度函数的泰勒展开 每一个级数表示原始概率密度函数的一个特征 如果两个分布的所有特征都相同,那我们就认为这是两个相同的分布 矩是描述概率分布的重要特征,期望、方差等概念都是矩的特殊形态 直觉上可以简单理解为: 各阶矩相等 → 各个特征相等 → 分布相
为为为什么
2022/08/05
4.1K0
概率论基础 - 7 - 特征函数
时间序列平稳性、白噪声、随机游走
作者:东哥起飞,来源:Python数据科学 本文开启时间序列系列的相关介绍,从零梳理时序概念、相关技术、和实战案例,欢迎订阅 👉时间序列专栏 跟踪全部内容。 本篇介绍时间序列的平稳性的相关概念。很多传统时序方法比如ARMA、ARIMA都需要时序具备平稳性,那什么是时序的平稳性?为什么需要平稳性,平稳性有什么作用? 什么是平稳性? 时间序列平稳性是指一组时间序列数据看起来平坦,各阶统计特征不随时间的变化而变化。平稳性分为宽平稳和严平稳,我们分别给出定义: 严平稳 严平稳是一种条件很苛刻的定义,时间序列的所有统
Python数据科学
2023/03/08
2.4K0
时间序列平稳性、白噪声、随机游走
Deep Learning Chapter01:机器学习中概率论
好久不见,大家好,我是北山啦。机器学习当中需要用到许多的数学知识,如今博主又要继续踏上深度学习的路程,所以现在在网上总结了相关的考研数学和机器学习中常见相关知识如下,希望对大家有所帮助。
北山啦
2022/10/31
3980
Deep Learning Chapter01:机器学习中概率论
概率论09 期望
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
Vamei
2018/09/25
7520
概率论09 期望
R语言蒙特卡洛计算和快速傅立叶变换计算矩生成函数
特征函数能够唯一确定随机变量的概率分布,如果随机变量的概率密度函数f(x)存在,特征函数相当于 f(x)的傅里叶变换。
拓端
2020/09/28
1.2K0
R语言蒙特卡洛计算和快速傅立叶变换计算矩生成函数
几何矩
假定亮度函数 是分段连续且限制在区域 中,则几何矩序列 由亮度函数 唯一确定;反之亦然。
hotarugali
2022/03/10
1.2K0
【机器学习】在不确定的光影中:机器学习与概率论的心灵共舞
机器学习已经成为现代科技的核心驱动力之一,而背后支撑这一技术的基础之一就是概率论。在机器学习中,概率论帮助我们理解和处理不确定性,进而建立模型进行预测和决策。无论是在分类、回归任务,还是在强化学习与生成模型中,概率论都起着至关重要的作用。
半截诗
2025/01/09
1780
【机器学习】在不确定的光影中:机器学习与概率论的心灵共舞
机器学习概率基础:除了偏度、峰度还有矩量母函数
本篇介绍随机变量和概率分布的基本概念,以及有关概率分布的一些简单统计量,它们构成了概率和统计的基础知识。
Python数据科学
2021/09/08
1.2K0
机器学习概率基础:除了偏度、峰度还有矩量母函数
数据科学基础(三) 期望和方差
📚 文档目录 随机事件及其概率 随机变量及其分布 期望和方差 大数定律与中心极限定理 数理统计的基本概念 参数估计 假设检验 多维 回归分析和方差分析 降维 3.1 数学期望 3.1.1 离散型数据的数学期望 P(X=x_k)= p_k, 若 \sum^\infty_{k=1}x_kp_k 绝对收敛,则 E(X)=\sum^\infty_{k=1}x_kp_k.注意:数学期望不一定均存在. 3.1.2 连续型数据的数学期望 X 的密度函数为 f(x),\int_{-\infty}^{\infty}xf(x)
Rikka
2022/01/19
7280
概率论基础 - 11 - 高斯分布 / 正态分布
本文记录高斯分布。 高斯分布 / 正态分布 正态分布是很多应用中的合理选择。如果某个随机变量取值范围是实数,且对它的概率分布一无所知,通常会假设它服从正态分布。有两个原因支持这一选择: 建模的任务的真实分布通常都确实接近正态分布。 中心极限定理表明,多个独立随机变量的和近似正态分布。 在具有相同方差的所有可能的概率分布中,正态分布的熵最大(即不确定性最大)。 一维正态分布 正态分布的概率密度函数为: p(x)=\frac{1}{\sqrt{2 \pi} \sigma} e{-(x-\mu){2}
为为为什么
2022/08/05
1.6K0
概率论基础 - 11 - 高斯分布 / 正态分布
图解AI数学基础 | 概率与统计
教程地址:http://www.showmeai.tech/tutorials/83
ShowMeAI
2022/02/25
9440
图解AI数学基础 | 概率与统计
概率论基础 - 4 - 协方差、相关系数、协方差矩阵
本文介绍协方差。 协方差 协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。 —— 百度百科 定义 在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 期望值分别为E[X
为为为什么
2022/08/05
1.4K0
概率论基础 - 4 - 协方差、相关系数、协方差矩阵
概率论11 协方差与相关系数
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明。谢谢!
Vamei
2018/09/25
1.4K0
概率论11 协方差与相关系数
【R系列】概率基础和R语言
R语言是统计语言,概率又是统计的基础,所以可以想到,R语言必然要从底层API上提供完整、方便、易用的概率计算的函数。让R语言帮我们学好概率的基础课。 1. 随机变量 · 什么是随机变量? · 离散型随机变量 · 连续型随机变量 1). 什么是随机变量? 随机变量(random variable)表示随机现象各种结果的实值函数。随机变量是定义在样本空间S上,取值在实数载上的函数,由于它的自变量是随机试验的结果,而随机实验结果的出现具有随机性,因此,随机变量的取值具有一定的随机性。 R程序:生成一个在(0,1,
小莹莹
2018/04/20
2.3K0
【R系列】概率基础和R语言
随机变量X的k阶(原点、中心)矩
其中 𝐸[⋅]E[⋅] 表示数学期望。如果 𝑎=0a=0,则称 𝜇𝑘μk​ 为k阶原点矩;如果 𝑎=𝐸[𝑋]a=E[X],则称 𝜇𝑘μk​ 为中心矩。 随机变量 𝑋X 的k阶中心矩定义为:
用户11315985
2024/10/16
5800
随机变量X的k阶(原点、中心)矩
相关推荐
概率论13 中心极限定律
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验