Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >浅析深度学习在实体识别和关系抽取中的应用

浅析深度学习在实体识别和关系抽取中的应用

作者头像
机器学习算法工程师
发布于 2018-03-06 09:37:42
发布于 2018-03-06 09:37:42
2.5K0
举报

实体识别

作者:蒙 康

编辑:黄俊嘉

命名实体识别

1

命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型,如下图。命名实体识别是NLP领域中的一些复杂任务的基础问题,诸如自动问答,关系抽取,信息检索等 ,其效果直接影响后续处理的效果,因此是NLP研究的一个基础问题。

NER一直是NLP领域中的研究热点,现在越来越多的被应用于专业的领域,如医疗、生物等。这类行业往往具有大量的专业名词,名词与名词之间相互之间存在着不同种类的关系。NER的研究从一开始的基于词典和规则的方法,基于统计机器学习的方法,到近年来基于深度学习的方法,NER研究的进展趋势如下图所示。

基于统计机器学习的方法主要包括:隐马尔可夫模型(HiddenMarkovModel HMM)、最大熵(MaxmiumEntropy,ME)、支持向量机(Support VectorMachine,SVM)、条件随机场( Conditional Random Fields,CRF)等。

隐马尔可夫模型(HMM)主要利用Viterbi算法求解命名实体类别序列,在训练和识别时的效率较高且速度较快。隐马尔可夫模型适用于一些对实时性有要求以及像信息检索这样需要处理大量文本的应用,如短文本命名实体识别。

最大熵模型(ME)结构紧凑,具有较好的通用性,缺点是训练时间复杂性高,有时甚至训练代价难以承受,由于需要明确的归一化计算,导致计算开销比较大。

传统的公认比较好的处理算法是条件随机场(Conditional Random Field,CRF),它给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫随机场,它是一种判别式概率模型,是随机场的一种。CRF常用于标注或分析序列资料,如自然语言文字或是生物序列,在NER中的基本应用是给定一系列的特征去预测每个词的标签。

上图中,X我们可以看做成一句话的每个单词对应的特征,Y可以看做成单词对应的标签。这里的标签就是对应场景下的人名、地名等等。

CRF优点:立足于局部最优解,在已给出z的条件下计算可能的序列 y 的概率分布。

近年来随着深度学习的飞速发展,像RNN、LSTM这些模型在NLP任务中得到了广泛的应用,其特点在于具备强大的序列建模能力,它们能够很好地捕捉上下文信息,同时具备神经网络拟合非线性的能力,这些都是比CRF具有优势的地方。LSTM的优点在于获取长时间序列上样本与样本之间的关系,而BiLSTM可以更有效的获取输入语句前后的特征。BiLSTM+CRF已在NLP多数场景中表现出非常良好的效果。例如在分词任务中,对比传统的分词器,BiLSTM能发挥双向获取句子特征这一优势,分词效果更接近人类认知的感觉。

关系抽取

2

在当前NLP研究中,关系抽取(relation extraction)任务被广泛应用于数据简化和构建知识图谱中。给定用户输入的一段自然语言,在正确识别实体的基础上,抽取它们之间的关系就是亟待解决的重要问题。目前解决这个问题的方法分为串联抽取和联合抽取两类。一般传统的串联抽取方法是在实体抽取的基础上进行实体之间关系的识别。在这种方法中,先期实体识别的结果会影响到关系抽取的结果,前后容易产生误差累积。针对这一问题,基于传统机器学习的联合模型(Joint model)被提出并逐步用于对这一类的NLP任务进行联合学习。

联合模型的方法主要基于神经网络的端对端模型同时实现实体抽取和关系抽取,这样做能够更好的将实体和其中的关系信息进行结合。

在论文《Joint Entity and Relation Extraction Based on A Hybrid Neural Network》中,作者提出了混合的神经网络模型来进行命名实体识别(NER)和关系分类(RC)。NER和RC使用同一BiLstm网络对输入进行编码,根据NER预测的结果对实体进行配对,然后将实体之间的文本使用一个CNN网络进行关系分类。

CNN用于关系分类(RC)

通过底层的模型参数共享,在训练时两个任务都会通过后向传播算法来更新共享参数来实现两个子任务之间的依赖。

在论文《A neural joint model for entity and relation extraction from biomedical text》中,作者将联合学习的方法用于生物医学实体识别和关系抽取当中,在关系分类时,输入的语句首先进行依存分析构建起依存句法树,然后将这种树状结构输入到Bilstm+RNN的网络中进行关系分类,如下图:

通过以上的方法可以看出,两个任务的网络通过共享参数的方式联合学习,训练先进行NER,再根据NER的结果进行关系分类。

今年ACL的Outstanding Paper《Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme》提出了一种新的标注策略来进行关系抽取,采用一种jointly的方法把命名实体识别(named entity recognize)和关系抽取(relation extraction)两步结合到一起:通过一种新的标注策略(tagging scheme)把抽取任务转换为标注任务,然后利用深度学习的方法通过一个端到端的模型(end-to-end tagging model)来抽取出最终的结果。新的标注方案示例如下图:

上图中“CP”代表“Country-President”,“CF“代表“Company-Founder”,这样就将原来的两个子任务完全转换为一个序列标注问题,作者使用“BIES”(Begin,Inside,End,Single)进行标注,来表示当前词在整个 entity 中的位置,关系类型则来自于预先设定的关系类型集合。用“1”,“2”来表示entity在关系中的角色信息,其中“1”表示,当前词属于三元组(Entity1,RelationType,Entity2)的 Entity1,同理”2”表示,当前词属于Entity2,根据标注结果将两个相邻顺序实体组合为一个三元组。例如:通过标注标签可知,“United”与“States”组合形成了实体“United States”,实体“United States”与实体“Trump”组合成了三元组 {United States, Country-President,Trump}。

论文作者主要考虑一个词只属于一个三元组的情况,对于三元组重叠问题,即多个三元组都包含同一个词的情况,作者暂时还没有考虑。端到端的模型如下图所示:

模型还是使用 BiLSTM来进行编码,然后使用参数共享中的 LSTM 来进行解码。 这一模型可以用于丰富已有的知识图谱资源,例如现在多样的智能化应用,如:自动问答、智能搜索、个性化推荐等,都需要知识图谱的支撑。

总结

3

参数共享的方法越来越多的被用于基于神经网络的实体识别和关系抽取联合学习中,这种方法在多任务中有着广泛的应用且简单容易实现。如何将这两类任务更好的结合起来进行端到端关系抽取任务是下一步研究的重要趋势,我们期待有更好的方法出现。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-12-31,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器学习算法全栈工程师 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
基于神经网络的实体识别和关系抽取联合学习
作者丨罗凌 学校丨大连理工大学博士生 研究方向丨深度学习,文本分类,实体识别 联合学习(Joint learning)一词并不是一个最近才出现的术语,在自然语言处理领域,很早就有研究者使用基于传统机器学习的联合模型(Joint model)来对一些有些密切联系的自然语言处理任务进行联合学习。例如实体识别和实体标准化联合学习,分词和词性标注联合学习等等。 最近,研究者们在基于神经网络方法上进行实体识别和关系抽取联合学习,我阅读了一些相关工作,在此和大家一起分享学习(本文中引用了一些论文作者 Suncong Z
企鹅号小编
2018/03/05
2.4K0
基于神经网络的实体识别和关系抽取联合学习
【文本信息抽取与结构化】深入了解关系抽取你需要知道的东西
常常在想,自然语言处理到底在做的是一件什么样的事情?到目前为止,我所接触到的NLP其实都是在做一件事情,即将自然语言转化为一种计算机能够理解的形式。这一点在知识图谱、信息抽取、文本摘要这些任务中格外明显。不同的任务的差异在于目标的转化形式不一样,因而不同的任务难度、处理方式存在差异。
用户1508658
2020/02/27
1.4K0
【文本信息抽取与结构化】深入了解关系抽取你需要知道的东西
经典论文复现 | 基于标注策略的实体和关系联合抽取
过去几年发表于各大 AI 顶会论文提出的 400 多种算法中,公开算法代码的仅占 6%,其中三分之一的论文作者分享了测试数据,约 54% 的分享包含“伪代码”。这是今年 AAAI 会议上一个严峻的报告。 人工智能这个蓬勃发展的领域正面临着实验重现的危机,就像实验重现问题过去十年来一直困扰着心理学、医学以及其他领域一样。最根本的问题是研究人员通常不共享他们的源代码。
用户1386409
2019/03/07
1.4K0
经典论文复现 | 基于标注策略的实体和关系联合抽取
【论文分享】ACL 2020 信息抽取任务中的新动向
信息抽取一直以来都是自然语言处理中最基础的技术之一,它指的是将文本中的非结构化信息通过算法或模型自动提取转换为结构化数据的过程。信息抽取任务有多个子任务:命名实体识别(NER)、关系抽取(RE)、事件抽取(EE)。信息抽取的结果可以用于很多NLP的下游任务例如阅读理解、知识图谱构建和智能问答。今天给大家分享三篇ACL关于信息抽取的文章,分别涵盖了命名实体识别(NER)、信息联合抽取以及关系抽取(RE)三个方面。
zenRRan
2020/09/14
2.3K0
【论文分享】ACL 2020 信息抽取任务中的新动向
知识图谱构建-关系抽取和属性抽取
医疗知识图谱构建离不开大量的三元组,而三元组的获取除了先前文章介绍的IS-A上下位抽取,另一项就是关系抽取。关系抽取是信息抽取领域中的重要任务之一,目的在于抽取文本中的实体对,以及识别实体对之间的语义关系。例如"弥漫性肺泡出血易合并肺部感染"中,"弥漫性肺泡出血"与"肺部感染"都是疾病,他们之间的关系是"疾病-合并症"。存在于海量医疗文本中的知识体系网络,可以为其他NLP技术(实体链接,query 解析,问答系统,信息检索等)提供可解释性的先验知识(知识表示)和推理。
zenRRan
2020/03/03
7.7K0
文档级关系抽取:基于结构先验产生注意力偏差SSAN模型
Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction
汀丶人工智能
2022/12/21
4950
文档级关系抽取:基于结构先验产生注意力偏差SSAN模型
关系抽取调研——工业界
自动识别句子中实体之间具有的某种语义关系。根据参与实体的多少可以分为二元关系抽取(两个实体)和多元关系抽取(三个及以上实体)。
机器学习AI算法工程
2021/11/10
1.7K0
实体关系抽取综述及相关顶会论文介绍
每天给你送来NLP技术干货! ---- 写在前面 实体关系抽取作为文本挖掘和信息抽取的核心任务,其主要通过对文本信息建模,自动抽取出实体对之间的语义关系,提取出有效的语义知识。其研究成果主要应用在文本摘要、自动问答、机器翻译、语义网标注、知识图谱等。 1. 关系抽取任务简介 实体关系抽取作为信息抽取的重要任务,是指在实体识别的基础上,从非结构化文本中抽取出预先定义的实体关系。实体对的关系可被形式化描述为关系三元组〈e1,r,e2〉,其中 e1 和 e2 是实体,r 属于目标关系集 R{r1,r2, r3,…
zenRRan
2022/07/18
2.1K0
实体关系抽取综述及相关顶会论文介绍
基于Bert-NER构建特定领域中文信息抽取框架
本文通过多个实验的对比发现,结合Bert-NER和特定的分词、词性标注等中文语言处理方式,获得更高的准确率和更好的效果,能在特定领域的中文信息抽取任务中取得优异的效果。
机器学习AI算法工程
2020/03/26
2.8K0
一文读懂命名实体识别
本文对自然语言基础技术之命名实体识别进行了相对全面的介绍,包括定义、发展历史、常见方法、以及相关数据集,最后推荐一大波 Python 实战利器,并且包括工具的用法。
用户1737318
2019/04/30
2K0
一文读懂命名实体识别
object object_无监督命名实体识别
实体识别和关系抽取是例如构建知识图谱等上层自然语言处理应用的基础。实体识别可以简单理解为一个序列标注问题:给定一个句子,为句子序列中的每一个字做标注。因为同是序列标注问题,除去实体识别之外,相同的技术也可以去解决诸如分词、词性标注(POS)等不同的自然语言处理问题。
全栈程序员站长
2022/11/01
7760
【技术白皮书】第三章:文字表格信息抽取模型介绍——实体抽取方法:NER模型(上)
深度学习是一个由多个处理层组成的机器学习领域,用于学习具有多个抽象层次的数据表示。典型的层次是人工神经网络,由前向传递和后向传递组成。正向传递计算来自前一层的输入的加权和,并通过非线性函数传递结果。向后传递是通过导数链规则计算目标函数相对于多层模块堆栈权重的梯度。深度学习的关键优势在于表示学习的能力以及向量表示和神经处理赋予的语义合成能力。这允许机器输入原始数据,并自动发现分类或检测所需的潜在表示和处理。
合合技术团队
2022/08/17
1.2K0
【技术白皮书】第三章:文字表格信息抽取模型介绍——实体抽取方法:NER模型(上)
【每周NLP论文推荐】 NLP中命名实体识别从机器学习到深度学习的代表性研究
NER是自然语言处理中相对比较基础的任务,但却是非常重要的任务。在NLP中,大部分的任务都需要NER的能力,例如,聊天机器人中,需要NER来提取实体完成对用户输入的理解;在信息提取任务中,需要提取相应的实体,以完成对信息的抽取。
用户1508658
2019/08/09
1.1K0
【每周NLP论文推荐】 NLP中命名实体识别从机器学习到深度学习的代表性研究
深度学习应用篇-自然语言处理-命名实体识别[9]:BiLSTM+CRF实现命名实体识别、实体、关系、属性抽取实战项目合集(含智能标注)【上篇】
**命名实体识别(Named Entity Recoginition, NER)**旨在将一串文本中的实体识别出来,并标注出它所指代的类型,比如人名、地名等等。具体地,根据MUC会议规定,命名实体识别任务包括三个子任务:
汀丶人工智能
2023/10/11
1K0
深度学习应用篇-自然语言处理-命名实体识别[9]:BiLSTM+CRF实现命名实体识别、实体、关系、属性抽取实战项目合集(含智能标注)【上篇】
初学者|一文读懂命名实体识别
本文对自然语言基础技术之命名实体识别进行了相对全面的简绍,包括定义、发展历史、常见方法、以及相关数据集,最后推荐一大波python实战利器,并且包括工具的用法。
yuquanle
2019/05/29
1.4K0
【每周NLP论文推荐】 掌握实体关系抽取必读的文章
欢迎来到《每周NLP论文推荐》。在这个专栏里,还是本着有三AI一贯的原则,专注于让大家能够系统性完成学习,所以我们推荐的文章也必定是同一主题的。
用户1508658
2019/08/30
1.2K0
【每周NLP论文推荐】 掌握实体关系抽取必读的文章
【NLP基础】信息抽取(Information Extraction:NER(命名实体识别),关系抽取)
信息抽取的定义为:从自然语言文本中抽取指定类型的实体、关系、事件等事实信息,并形成结构化数据输出的文本处理技术
zenRRan
2020/02/18
11.9K0
干货 | 大规模知识图谱的构建、推理及应用
作者简介 李健,携程度假研发部研发总监,2013年底加入携程,在数据挖掘分析、人工智能方面有一定的实践与积累。 随着大数据的应用越来越广泛,人工智能也终于在几番沉浮后再次焕发出了活力。除了理论基础层面的发展以外,本轮发展最为瞩目的是大数据基础设施、存储和计算能力增长所带来的前所未有的数据红利。 人工智能的进展突出体现在以知识图谱为代表的知识工程以及以深度学习为代表的机器学习等相关领域。 未来伴随着深度学习对于大数据的红利消耗殆尽,如果基础理论方面没有新的突破,深度学习模型效果的天花板将日益迫近。而另一方面
携程技术
2018/03/16
2.8K0
干货 | 大规模知识图谱的构建、推理及应用
【关于 NLP】百问百答
作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金
杨夕
2021/03/11
1.1K0
【关于 NLP】百问百答
OCR 【技术白皮书】第一章:OCR智能文字识别新发展——深度学习的文本信息抽取
信息抽取 (Information Extraction) 是把原始数据中包含的信息进行结构化处理,变成表格一样的组织形式。输入信息抽取系统的是原始数据,输出的是固定格式的信息点,即从原始数据当中抽取有用的信息。信息抽取的主要任务是将各种各样的信息点从原始数据中抽取出来。然后以统一的形式集成在一起,方便后序的检索和比较。由于能从自然语言中抽取出信息框架和用户感兴趣的事实信息,无论是在信息检索、问答系统还是在情感分析、文本挖掘中,信息抽取都有广泛应用。随着深度学习在自然语言处理领域的很多方向取得了巨大成功,循环神经网络(RNN)和卷积神经网络(CNN)也被用于信息抽取研究领域,基于深度学习的信息抽取技术也应运而生。
合合技术团队
2022/08/15
1.3K0
OCR 【技术白皮书】第一章:OCR智能文字识别新发展——深度学习的文本信息抽取
推荐阅读
相关推荐
基于神经网络的实体识别和关系抽取联合学习
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档