Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >yolov5 + deepsort实现了行人计数

yolov5 + deepsort实现了行人计数

作者头像
润森
发布于 2022-12-20 12:59:50
发布于 2022-12-20 12:59:50
1.3K01
代码可运行
举报
文章被收录于专栏:毛利学Python毛利学Python
运行总次数:1
代码可运行

本项目使用yolov5作为检测器,使用deepsort作为跟踪器,跟踪并计数镜头前走过的行人数量。

代码中设置的是只计数行人的数量,如果要计数其他东西比如车辆之类的也非常简单,只需要稍微修改一下代码即可,

在parser.add_argument('--classes', default=0, type=int, help='filter by class: --class 0, or --class 0 1 2 3')中,通过classes来过滤yolov5要检测类别,0表示检测人,1表示自行车,还有其他的类别。

项目入口:主要的外部输入的参数,defalt为默认参数

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
if __name__ == "__main__":
    torch.multiprocessing.set_start_method('spawn')
    parser = argparse.ArgumentParser()
    # 视频的路径,默认是本项目中的一个测试视频test.mp4,可自行更改
    parser.add_argument('--input', type=str, default="./test.mp4",
                        help='test imgs folder or video or camera')  # 输入'0'表示调用电脑默认摄像头
    # 处理后视频的输出路径
    parser.add_argument('--output', type=str, default="./output",
                        help='folder to save result imgs, can not use input folder')
    parser.add_argument('--weights', type=str, default='weights/yolov5l.pt', help='model.pt path(s)')
    parser.add_argument('--img_size', type=int, default=640, help='inference size (pixels)')
    parser.add_argument('--conf_thres', type=float, default=0.4, help='object confidence threshold')
    parser.add_argument('--iou_thres', type=float, default=0.4, help='IOU threshold for NMS')
    # GPU0表示设备的默认的显卡)或CPU
    parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    # 通过classes来过滤yolo要检测类别,0表示检测人,1表示自行车,更多具体类别数字可以在19行附近打印出来
    parser.add_argument('--classes', default=0, type=int, help='filter by class: --class 0, or --class 0 1 2 3')

    yolo5_config = parser.parse_args()
    print(yolo5_config)
    main(yolo5_config)
    print("结果保存在:", yolo5_config.output)

yolov5 + deepsort实现了行人计数功能, 统计摄像头内出现过的总人数,以及对穿越自定义黄线行人计数效果如下

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-09-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小刘IT教程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【yolov5目标检测】使用yolov5训练自己的训练集
首先得准备好数据集,你的数据集至少包含images和labels,严格来说你的images应该包含训练集train、验证集val和测试集test,不过为了简单说明使用步骤,其中test可以不要,val和train可以用同一个,因此我这里只用了一个images
叶茂林
2023/10/23
1.3K0
【yolov5目标检测】使用yolov5训练自己的训练集
基于yolov4的目标检测_yolov5预训练模型
YOLOv5的代码是开源的,因此我们可以从github上克隆其源码。不得不说GitHub的确是全球最大的男性交友网站,里面的人个个都是人才,yolov5发布才一年左右的时间,YOLOv5就已经更新了5个分支了,分别是yolov5.1-yolov5.5分支。该项目就是利用的yolov5.5分支来作为讲解。
全栈程序员站长
2022/09/27
8340
基于yolov4的目标检测_yolov5预训练模型
深度好文 | YOLOv5+DeepSORT多目标跟踪深入解读与测试(含源码)
本文主要介绍如何使用Yolo-V5 + DeepSORT实现多目标检测与跟踪。(公众号:OpenCV与AI深度学习)
Color Space
2022/09/26
12.5K0
GitHub YOLOv5 开源代码项目系列讲解(三)------预测相关参数解释
当然,避免超时报错,亦可提前下载:https://github.com/ultralytics/yolov5/releases/tag/v5.0,之后将模型文件放置到最外层文件夹即可。
荣仔_最靓的仔
2021/09/07
4.5K0
利用yolov5实现口罩佩戴检测算法
首先申明,这篇博客是用于记录我第一次完全从头到尾跑通一个算法,我会在此博客详细写出我的具体过程,以供大家参考,可能会和炮哥博客有些重合,没办法毕竟我就是用他的博客来训练模型的。但这篇博客我会结合炮哥的博客和我自己训练过程中的一些问题和心得来写,所以还是会有所不的!!!博主其实也是个深度学习的小菜鸟hhh。在此感谢。
润森
2022/09/22
8570
利用yolov5实现口罩佩戴检测算法
YOLOv5 实现目标检测(训练自己的数据集实现猫猫识别)
2020年6月10日,Ultralytics在github上正式发布了YOLOv5。YOLO系列可以说是单机目标检测框架中的潮流前线了,YOLOv5并不是一个单独的模型,而是一个模型家族,包括了YOLOv5s(最小)、YOLOv5m、YOLOv5l、YOLOv5x(最大)。目前v6.0版本又新增一层YOLOv5n模型,代替YOLOv5s成为最小模型,在所有模型中速度更快但精度也更低。
全栈程序员站长
2022/07/01
5.1K0
YOLOv5 实现目标检测(训练自己的数据集实现猫猫识别)
使用YOLOv5模型进行目标检测!
目标检测是计算机视觉领域的一大任务,大致分为一阶段目标检测与两阶段目标检测。其中一阶段目标检测模型以YOLO系列为代表。最新的YOLOv5在各个数据集上体现出收敛速度快、模型可定制性强的特点,值得关注。本文主要讲解如何从零训练自己的YOLOv5模型与一些重要参数的含义。
Datawhale
2021/07/12
11.2K0
使用YOLOv5模型进行目标检测!
YOLOv5桌面应用开发,手把手教学实操(中)——附源代码
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 今天分享的内容来自CSDN——成都_小吴,该同学撰写的一篇关于Yolov5桌面应用的开发工作,有兴趣的同学可以关注CSDN!具体文章链接:https://blog.csdn.net/qq_52859223/article/details/122982212 计算机视觉研究院专栏 作者:Edison_G 上周“计算机视觉研究院”给大家分享了一期yolov5训练干货,今天我们继续,开
计算机视觉研究院
2022/03/04
4140
全球人工智能技术创新大赛【热身赛一】布匹疵点智能识别Baseline
在布匹的实际生产过程中,由于各方面因素的影响,会产生污渍、破洞、毛粒等瑕疵,为保证产品质量,需要对布匹进行瑕疵检测。布匹疵点检验是纺织行业生产和质量管理的重要环节,目前人工检测易受主观因素影响,缺乏一致性;并且检测人员在强光下长时间工作对视力影响极大。由于布匹疵点种类繁多、形态变化多样、观察识别难道大,导致布匹疵点智能检测是困扰行业多年的技术瓶颈。
听城
2021/03/02
1.4K0
全球人工智能技术创新大赛【热身赛一】布匹疵点智能识别Baseline
Yolov5 Android torchscript方式集成
到目前为止,上面提到的三种方式,前两种已经测试完了,第二种没有成功。最终问题处在修改如下代码的地方:
obaby
2023/02/22
7170
YOLOv5桌面应用开发(上)——附源代码
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 今天分享的内容来自CSDN——成都_小吴,该同学撰写的一篇关于Yolov5桌面应用的开发工作,有兴趣的同学可以关注CSDN!具体文章链接:https://blog.csdn.net/qq_52859223/article/details/122982212 计算机视觉研究院专栏 作者:Edison_G 本文主要讲解几个部分,(适合一些在读的研究生啥也不会然后接到一些项目无从下手
计算机视觉研究院
2022/03/04
5820
Github 项目- 基于YOLOV3 和 DeepSort 的实时多人追踪
原文:Github 项目- 基于YOLOV3 和 DeepSort 的实时多人追踪 - AIUAI
AIHGF
2019/02/27
5.7K0
Github 项目- 基于YOLOV3 和 DeepSort 的实时多人追踪
Yolov5 tf-lite方式导出
在之前的文章《Yolov5 Android tf-lite方式集成》中,导出tf-lite方式的模型使用的是https://github.com/zldrobit/yolov5.git中的tf.py。晚上尝试用yolov5 最新版本的代码的export.py导出,如果不想修改命令行参数,可以字节修改以下代码:
obaby
2023/02/22
8060
【目标检测】YOLOv5跑通VOC2007数据集
如果经常阅读我博客的读者,想必对YOLOv5并不陌生。在Pytorch:YOLO-v5目标检测(上)一文中,我使用了coco128数据集,非常轻松的跑通了。然而在使用VOC2007数据集时,却遇到重重阻碍。主要问题在数据标签转化这个阶段,VOC数据集标注形式是xml,需要将其转换为txt。很多博文并未把文件的放置位置交代清楚,导致走了不少弯路,本篇博文就记录如何不走弯路地跑通VOC数据集。
zstar
2022/09/07
2.1K1
【目标检测】YOLOv5跑通VOC2007数据集
Google Colab上的YOLOv3 PyTorch
对于计算机视觉爱好者来说,YOLO(一次只看一次)是一种非常流行的实时对象检测概念,因为它的速度非常快并且性能出色。
代码医生工作室
2020/04/14
2.7K0
Google Colab上的YOLOv3 PyTorch
Pytorch:YOLO-v5目标检测(上)
YOLO全称为You Only Look Once(你只需看一次)。卷积神经网络处理图像时,需要将用卷积核对图像进行逐行扫描,而YOLO则是将一张图片分成无数个方格,通过机器来判断每个方格出现目标的可能性。具体的理论比较复杂,想要了解原理,我推荐看下面两个视频。 第一个是吴恩达讲解的Yolo算法(传送门) 第二个是B站讲解最清楚的Yolo-v3算法(传送门) Yolo中的v即version,代表版本,yolo的创始人总共从v1更新到v3,而v4,v5则是另外一位作者编写,虽未得到官方认可,但在某测试集上的表现已经超越之前的v3版本。
zstar
2022/06/14
1.3K0
Pytorch:YOLO-v5目标检测(上)
基于YOLOv5的玻璃瓶盖缺陷检测
​摘要:采用Yolov5对玻璃瓶盖进行缺陷检测,做到工业落地部署,该任务相对来说在工业界较为简单,性能也能够满足客户要求,做到漏判≤0.01%,误报≤0.5%,交付成功;
AI小怪兽
2023/11/30
7190
起飞 | 应用YOLOV4 - DeepSort 实现目标跟踪
本文分享利用yolov4+deepsort实现目标跟踪,主要是讲解如何使用,具体原理可以根据文中的参考资料更加深入学习。目前主流的趋势是将算法更加易用,让更多人感受到视觉的魅力,也能让更多有意向从事这个领域的人才进入。但受限于某些客观的限制,比如github下载容易失败,谷歌网盘无法下载等,让部分人不得不退却。
AI算法与图像处理
2020/09/27
6.1K10
基于YOLOv5的二维码QR码识别
二维码被广泛的应用在我们日常生活中,比如微信和支付宝支付、火车票、商品标识等。二维码的出现极大的方便了我们日常的生活,同时也能将信息较为隐蔽的传输。二维码种类多种多样,有QR Code、Data Matrix、Code One等,日常生活中常用的二维码是QR二维码,该二维码样式以及每部分的作用在图7-30给出。二维码定点方向有三个较大的“回”字形区域用于对二维码进行定位,该区域最大的特别之处在于任何一条经过中心的直线其在黑色和白色区域的长度比值都为1:1:3:1:1。二维码中间具有多个较小的“回”字形区域用于二维码的对齐,根据二维码版本和尺寸的不同,对齐区域的数目也不尽相同。
AI小怪兽
2023/12/04
1K0
【目标检测】YOLOv5-5.0增加save_crop及后处理
因为项目中用到的是YOLOv5-5.0版本,save_crop是6.0版本才开始有的接口,因此需要将6.0版本做一个迁移。 此篇博文主要用作代码备份,自用为主。
zstar
2022/10/28
1.3K0
推荐阅读
相关推荐
【yolov5目标检测】使用yolov5训练自己的训练集
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验