Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >KDD 2021 | Neural Auction: 电商广告中的端到端机制优化方法

KDD 2021 | Neural Auction: 电商广告中的端到端机制优化方法

作者头像
Houye
发布于 2021-10-12 03:14:02
发布于 2021-10-12 03:14:02
1.8K0
举报
文章被收录于专栏:图与推荐图与推荐

导读

拍卖机制设计一直是计算广告领域的核心问题,在本文中我们将机器学习和机制设计方法深度融合,提出一种基于深度神经网络建模的电商广告拍卖机制,并在满足 Value 最大化广告主激励兼容的机制解空间内实现多利益方目标的端到端优化。目前,该方法已应用于阿里妈妈展示广告场景,基于该工作撰写的论文已被国际会议 KDD 2021 接收。本文将对深度学习机制设计方法展开介绍,希望可以对从事相关工作的同学带来启发或帮助。

1 摘要

在电商广告系统中,综合考虑多利益方(用户、广告主、平台)的目标十分关键。传统的拍卖机制(例如 GSP/VCG)由于分配规则确定且专注于优化单一目标(例如收入/社会福利),在优化多利益方指标时可能是次优解。一种可能的研究方向是使用基于数据驱动的机器学习方法,它能从真实数据中直接学习拍卖机制,并有能力使机制朝着给定的业务目标灵活调控。然而,拍卖机制的执行过程中涉及一些不可导的操作(如排序等),这些操作可能和基于梯度回传的大多数深度学习方法难以兼容,制约了机制模型的学习能力。阿里妈妈展示广告机制策略算法团队提出一种基于深度学习的拍卖机制设计方法 —— Deep Neural Auction (DNA),并将其应用在工业界电商广告场景中。DNA 使用深度神经网络从原始拍卖数据中提取特征信息,并将机制分配过程编码到模型内部,利用一种可微分算子对该分配过程中的排序操作进行松弛,在分配结果和反馈信号间建立可微分梯度计算关系以支持端到端训练。此外,DNA 将机制博弈均衡属性(广告主激励兼容)显式融入模型设计中。该机制已被部署在阿里妈妈展示广告系统中,在大规模离线数据集实验以及在线 A/B实验中,DNA 机制对比传统拍卖机制在优化多利益方指标上都展现出了更好的效果。

图: 深度学习机制设计

2 问题建模

2.1 多利益方博弈视角下的多目标电商广告机制设计

定义在电商广告场景中多利益方(广告主、用户、广告平台)博弈下的多目标优化问题:

其中 表示要优化的机制(即分配和扣费规则), 表示广告主的出价, 代表多利益方诉求指标的线性加权和(weight-sum):,例如(平台收入、点击率、转化率、收藏加购率、成交量等等),所有指标通过预先给定的重要性权重求得聚合目标函数。在优化过程中需要满足机制的激励兼容约束(Incentive compatibility,IC)和个体理性约束(Individual Rationality,IR),即在当前机制下所有广告主的最优策略为诚实报价,以及广告主的净效用不能为负(不超过最大意愿出价)。

对于该问题,工业界普遍使用 uGSP 机制[6]来优化多目标。尽管 uGSP 具有较好的可解释性,但机制解空间存在效果天花板:1. 排序策略被限制在 ecpm 和其他指标的线性组合中;2. 作为一种“静态”机制,uGSP 严重依赖预估模型的准确性,很难根据流量波动和预估不精准做动态调整,缺乏直接对标终局效果的自适应调控能力。

2.2 基于Value Maximizer的电商广告主建模

在传统的拍卖机制理论中,经典的激励兼容机制(如 Myerson/VCG 拍卖)均假设广告主模型为效用最大化模型(utility-maximizer),即广告主的目标为最大化其拟线性效用(quasi-linear utility):。然而我们观察到近些年工业界的电商广告系统中,效用最大化广告主模型已不能完整描述广告主的核心诉求了。例如在淘宝展示广告系统中(Google Ads 中也有相似的产品模式 [11]),存在给定单次出价上限的 OCPC 类型广告主、以及 预算/PPC/PPA 约束下的 MCB 类型广告主,而这些广告主常常不再关心 utility 绝对值的大小,只是将扣费作为一项约束,尽可能地追求其营销目标的最大化(即value,如点击量、成交量等等)。Yahoo!在2017年提出的“Value Maximizer”概念[1]可以描述这一广告主类型的行为模式:

Definition (Value Maximizer). A value maximizer optimizes value while keeping payment below her maximum willing-to-pay ; when value is equal, a lower is preferred.

进一步地,文献[1]证明了对于“Value Maximizer”广告主,机制的 IC 和 IR 需要满足以下两个条件:

  • Monotonicity(单调分配):广告主上报了更高的报价不能拿到更差的分配结果;
  • Critical Price(最小扣费):胜出广告的计费应为其拿到相同坑位的最低报价。

在后面机制模型的设计过程中时也会显式融入这两个条件,来保障广告主的激励兼容和个体理性这两项经济学性质。

3 模型设计

由于可解释性较好且易于部署,我们仍然沿用“基于 rankscore 排序”的机制分配框架,并使用深度神经网络计算每条广告的 rankscore。如图所示,Neural Auction 主要由三部分模块构成 :

  1. 集合编码器(Set Encoder),学习整个竞价队列的上下文信息,输出一个定义在竞价队列上的特征。
  2. 上下文评分函数(Context-Aware Rank Score Function),以单个广告的特征和竞价队列特征作为输入,学习每个广告的排序分数,并保障广告主的 IC/IR 性质。
  3. 可微排序引擎(Differentiable Sorting Engine),以竞价队列所有广告的排序分数为输入,以可微的形式进行排序操作,并进一步计算在当前排序分状态下的其他估计指标。

接下来将详细介绍这三部分模型设计和整体的训练方法。

3.1 集合编码器(Set Encoder)

建模候选队列参竞广告的上下文信息对提升平台侧的分配能力十分重要,比如重排技术 [9,10]也运用了很多类似的信息。但不同于序列建模,机制模块的参竞候选集是无序的,因此上下文信息提取结构必须要保持集合的排列不变性(permutation invariance)。为了解决这个问题,我们采用 DeepSet [2]网络结构来建模这一映射关系,其具体计算过程如下:

核心思路是先使用一个共享的编码器 将每一个广告特征映射到高维空间,再通过聚合操作符(这里我们选用平均池化)生成一个固定大小的聚合特征,最后再通过一个编码器 输出这个候选集合的特征表示。这一信息表示将输出到下游的广告评分函数中,辅助推断每个广告在当前候选集上的竞争力。

3.2 上下文评分函数(Context-Aware Rank Score Function)

评分函数的输入为每个广告的特征与上游集合编码器输出的集合表示,输出为每个广告的排序分,所有广告共享这一评分函数,并使用深度神经网络来建模这一映射过程。但2.2中我们介绍过,机制的经济学性质(IC/IR)对评分函数提出了更多的要求——“单调分配”和“最小计费”,而这两点转化为数学语言即:排序分函数需要同时具有“单调性”和“可求逆”的特性。Neural Auction 模型直接通过结构性保障来约束机制的 IC/IR 参数化空间,通过设计一种 Partially Monotone Min-Max Network [3]的网络结构来实现每个广告的排序分函数。这种网络结构的特性是:求逆过程可以通过对网络参数进行简单变换来得到,并且可以约束其中部分网络参数来实现在 bid 上的部分单调。其具体的前向计算和求逆过程如下:

这一网络结构已有文献[3]证明具备通用的非线性function approximator能力,我们通过优化该网络结构的参数来实现IC/IR约束下的平台机制多目标优化。

3.3 可微分排序算子(Differentiable Sorting Engine)

排序分函数模块在计算完所有广告的分数之后会统一输出到可微分排序引擎中,这一模块的作用是以一种可微的计算形式来表达“排序”这一算子,从而能够与梯度下降训练方法结合,实现自动化的端到端训练。为了解决“排序不可微”问题,我们使用一种 NeuralSort 技术[4]来实现这一计算过程,其核心思路是使用 softmax 将离散的排序过程连续化。首先将排序过程具体形式化为 topk 坑位的展现:即 argsort 的过程(我们假定 argsort 为按 rankscore 由高到底排序),则其对应的 permutation matrix 可以表示为:

矩阵中的每个元素 表示第 个广告的 rankscore 是否为整个队列中 大的元素。则进一步可以证明当定义 时,上述 permutation matrix 可以等价为:

其中 表示候选集中任意两个广告 rankscore 之间的绝对距离矩阵,即:; 表示所有广告个数。则对 做 松弛可以得到 permutation matrix 的连续可微形式:

其中 为温度超参,用于控制连续松弛的程度。其物理含义可以理解为:矩阵的第 行代表每个广告排在第位的概率。则这一可微分排序矩阵可以视作一个基础算子,作为连接“DNN-based rankscore”与“rankscore-based 排序”,及进一步“基于排序得到的真实反馈效果”之间的可微计算桥梁。例如:对于 topk 展现广告的收入,可以用该松弛矩阵简单地表示为:

由于整个计算路径不涉及离散操作,可以依据下游自定义的 loss metric 实现完整的端到端优化。

3.4 训练流程

3.4.1 样本构造:

DNA 机制模型使用的广告特征为:出价 bid、预估打分(pCTR,pCVR等)、广告相关信息(如商品类型、笔单价等)、用户相关信息(如性别、年龄段等)、上下文信息(如投放场景、广告产品类型等)、及其他统计特征,使用历史日志中用户的真实反馈行为(如点击、加购、成交等)构造训练信号。

3.4.2 训练 Loss

训练 loss 由两部分信号构成:

(1):直接面向后验真实反馈指标的最大化:

表示 topK 广告的多目标收益(注意这里使用了松弛排序矩阵 构造出了近似期望收益)。其中,表示所有候选广告的多目标效果。

(2):根据日志中的用户行为数据可以计算出一个最优排序,则可以构造一个分类预测的损失函数,来纠正经过 neuralsort 得到的松弛排序矩阵:

仔细观察这两个 loss 的形式不难发现, 的优化其实就是使网络产生的 rankscore 与在用户真实行为上计算出的多目标最优排序一致,但由于 revenue 的计算还是依赖于网络 rankscore 的求逆,导致 rankscore 之间的 distance 又会被显式优化,这给模型训练带来了一些不稳定的因素(离线实验中我们也确实观察到了);而 由于只纠正序的准确性,不涉及广告 rankscore 之间 distance 的学习,它的训练过程较为稳定。我们的经验是:如果优化目标仅有 revenue,那么 任务可以独立训练,最终会收敛(尽管其 learning curve 存在一些毛刺);如果优化多个目标之间权衡,那么 的权重要和 在同一水平,或者先全局优化 学好 allocation,再引入 精细化优化 revenue。

值得注意的是,工业界广告系统的真实反馈通常是稀疏的,算法日志中有用户行为的数据占比可能较低。为了使训练信号更加稠密、提高模型学习的效率,我们将用户反馈与预估值进行了融合,在有用户行为的数据上使用后验校准技术来纠正预估值,再进一步构造两个 loss,提高了训练的稳定性。

4. 实验效果

4.1 离线实验

在离线数据集上,我们主要对比了GSP[5]、UGSP[6]和DeepGSP[7]机制。为了更清晰的比较多目标优化效果,我们每次只选取两个目标进行优化(即RPM+X模式,)。从图中可以看出DNA机制的帕累托前端更优,目标之间的置换比较高。

为了验证机制模型的 IC 性质,受文献[8]中基于bid扰动设计 data-driven IC metric 的启发,我们定义了 value maximizer 广告主的后悔值(Regret),和:

分别表示如果对 bid 进行扰动,广告主 value 获得提升的最大占比及 payment 降低的最大占比。我们在真实广告日志上模拟了 bid 的扰动,并计算了两项 Regret 指标,结果如下表所示。可以看出 Neural Auction 机制的 regret 只有在 上不为0,但其占比较低,且对比非IC机制uGFP(一价拍卖)优势明显。

4.2 在线实验

Table2 对比了 DeepGSP 和 DNA 机制,在损失相同 RPM 水平下获得其他指标的提升,可以看出DNA获得了更优的置换比。Table3 展示了在线上对比 GSP 在所有指标上的优化效果,可以看出融合了多目标的 DNA 机制在所有指标上都优于 GSP,展现出 DNA 机制对于实现广告主、平台和用户体验多方共赢的调控能力。其他实验分析可参考论文:https://arxiv.org/abs/2106.03593。

5 总结与展望

传统的拍卖机制(例如GSP/VCG)由于分配规则确定且专注于优化单一目标(例如收入/社会福利),在优化多利益方指标时可能是次优解;而经典的uGSP则严重依赖预估模型的准确性,缺乏直接对标终局效果的自适应调控能力。为了解决该问题,阿里妈妈展示广告机制策略算法团队提出一种基于深度学习的拍卖机制设计方法 —— Deep Neural Auction (DNA)。在大规模离线数据集实验以及在线A/B实验中,DNA 机制对比传统拍卖机制在优化多利益方指标上都展现出了更好的效果。

AI is increasingly making decisions, not only for us, but also about us. 最近几年利用深度学习建模博弈关系的研究工作越来越多,基于深度学习的拍卖机制设计在工业界仍具有非常强的落地价值和研究前景,仍然有很多新的方向可以继续探索。比如:如何抽象出更好的优化目标来描述机制的长期效果,并融入机制模型的优化。另外,广告机制策略的另一大组成部分——出价(bidding),近几年也逐渐切换到了基于数据驱动的智能出价技术,那么拍卖智能体(Auction Agent)与出价智能体(Auto-bidding Agent)之间该如何协同,两个可学习agent之间的动态博弈关系是怎样的,异步学习会不会造成效果震荡,这些问题同样值得深入研究。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-09-29,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 图神经网络与推荐系统 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
广告、流量为王的当下,决策智能如何玩转数智商业场景
当今,为了更好地服务商家的数智经营,计算经济学理论、博弈论和人工智能技术被越来越多地应用到广告拍卖机制、投放策略中,让广告投放的决策(包括出价、流量分配等)更加智能,也就形成了我们所说的决策智能。 用户看到的每一次商品展现、商家的每一次广告出价、平台的每一次流量分配,背后都有庞大且复杂的决策智能做支撑。 首先,机制策略在广告投放中扮演着重要角色,比如如何帮助广告主出价以赢得更有价值的流量等。其次,深度学习和强化学习技术应用到拍卖机制设计领域开始受到越来越多的重视,虽然理论假设很强但有些甚至无法在实际应用中落
机器之心
2023/03/29
3230
广告、流量为王的当下,决策智能如何玩转数智商业场景
北大、阿里妈妈成立联合实验室,产学大牛合体,图模型、博弈论都安排上了!
机器之心原创 作者:张倩 对于实验室的长期目标,朱松纯指出:「联合实验室要锚住国际最前沿的人工智能发展趋势,面向国民经济发展的重大需求,在通用人工智能、元宇宙、数字人等前沿方向大胆探索,注重多学科之间的交叉与融合,探索出一条具有中国特色、体现中国智慧的发展道路,为国家的人工智能发展战略做出贡献。」 虽然 2022 尚未结束,但今年深度学习领域的研究趋势已然清晰,各大机构依然在大模型上展开角逐,尤其是通用性更强的多模态、多任务大模型:OpenAI 祭出了最新的 DALL·E 2,DeepMind 构建了通才
机器之心
2022/09/20
6480
北大、阿里妈妈成立联合实验室,产学大牛合体,图模型、博弈论都安排上了!
KDD2021 放榜,6 篇论文带你了解阿里妈妈AI技术
ACM SIGKDD(国际数据挖掘与知识发现大会,简称 KDD)是国际数据挖掘领域的顶级会议,由 ACM 的数据挖掘及知识发现专委会(SIGKDD)主办,被中国计算机协会推荐为A类会议。自 1995 年以来已连续举办 26 届,今年将于 8月14日至18日 在新加坡举办。
阿泽 Crz
2021/07/06
1.8K0
三大视角,聊聊我眼中的广告系统
从实习到工作,接触过一些大大小小的广告系统,有麻雀虽小但五脏俱全的小 dsp,也有把 ssp、adx、dsp 都打包了的大媒体 ,算是对业界的广告系统有了一个初步的了解。趁着放假这几天,简单地梳理一下当前了解到的广告系统知识,主要是想对零散的知识做个整理。
NewBeeNLP
2021/09/14
1.4K0
一分钟读懂互联网广告竞价策略(一分钟系列)
一分钟读懂互联网广告竞价策略GFP+GSP+VCG 两个广告位,三家广告主竞价,广告平台究竟应该制定广告竞价策略呢?这是本文即将分享的一个问题。 一、前序知识-传统竞价策略 英式拍卖(English Auction) 英式拍卖又叫公开增价拍卖OAB(Open Ascending Bid),卖家提供物品,在物品拍卖过程中,买家按照竞价阶梯由低至高喊价,出价最高者成为竞买的赢家。为了保证竞价收敛,一般会为竞价设定一个终止时间。这种模式非常容易理解,平时电影电视中经常看到。 荷兰式拍卖(Sealed-bid Au
架构师之路
2018/03/01
4.8K0
一分钟读懂互联网广告竞价策略(一分钟系列)
一文梳理广告CTR预估算法和架构体系
在搜索、推荐、广告领域,预估技术一直是非常重要的模块,规模比较大的互联网公司如谷歌、FB、阿里、字节等依靠广告系统带来了百亿乃至千亿以上美元的营收。在广告系统中,最后展示给用户的广告(如商品、视频、图文)往往需要经过大规模精细化的排序计算。在现在大多数CPC(Cost Per Click)计费的广告系统中,广告往往通过eCPM(千次展现计费价值)进行最终排序,eCPM主要由pCtr和bid两部分相乘得到,bid往往取决于商品自身的价值或广告主的预算成本,而pCtr则由广告系统计算得出。事实上,精准的pCtr结果能给商业公司带来极大的收益提升。
lyhue1991
2023/02/23
2.8K0
一文梳理广告CTR预估算法和架构体系
计算广告之淘宝oCPC智能出价
Paper:Optimized Cost per Click in Taobao Display Advertising
公众号-不为谁写的歌
2020/11/26
2.6K0
计算广告之淘宝oCPC智能出价
【计算广告】不懂这些专业术语别说你懂广告
不知不觉,广告已经渗透在我们生活中的方方面面。你说你讨厌广告,但其实你又离不开广告,举个简单的例子,大家在求职的时候,投递简历,这也是一种广告,在求职中简历的重要性不需要过多强调。广告以前最重要的是广而高知,还记得黄金时段必播的最洗脑的"脑白金"广告,不仅广泛的触达了各个群体,也改变了人们的行为认知。关于广告,可以写很多内容,本篇主要介绍在广告行业中的专业术语,及时大家可能不从事广告行业,但是了解业务知识帮助还是很大的,比如有利于对腾讯广告算法大赛理解更加深入。
黄博的机器学习圈子
2021/04/29
1.5K0
计算广告——搜索广告技术初窥
这是对一个PPT的内容的整理,PPT的主要内容是刘铁岩的《Online Advertising》。主要介绍了一些付费搜索相关的一些技术。这篇文章主要是对这方面的知识做一个整理。在搜索广告中,有很多的知识点是值得借鉴的。 一、广告 1.1、定义: Advertising is a form of communication intended to persuade an audience (viewers, readers, or listeners) to purchase or take action u
felixzhao
2018/03/16
2.2K0
计算广告——搜索广告技术初窥
爱奇艺信息流广告的排序算法演进
爱奇艺中国视频行业领先者,伴随着移动搜索市场的日渐强大,爱奇艺推出移动端信息流广告,视频关联位广告,贴片广告,浮层广告,角标广告等等
Python编程爱好者
2020/11/11
1.3K0
爱奇艺信息流广告的排序算法演进
美团O2O广告营销中的机器学习技术
AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索、推荐、广告、风控、智能调度、语音识别、机器人、无人配送等多个领域,帮助美团数亿消费者和数百万商户改善服务和体验,帮大家吃得更好,生活更好。
美团技术团队
2019/04/04
1.5K0
美团O2O广告营销中的机器学习技术
决策智能技术浪潮袭来,数智商业领域如何变革?来听听三位专家怎么说
机器之心报道 机器之心编辑部 近年来,伴随着广告主的需求变化和相关技术发展,计算经济学理论、博弈论和人工智能技术被越来越多地应用到广告拍卖机制、投放策略中。 决策智能在商业场景中的意义逐渐凸显。用户看到的每一次商品展现、商家的每一次广告出价、平台的每一次流量分配,背后都有庞大且复杂的决策智能做支撑。 这些动作的目标在于优化用户购物体验,让广告投放的决策过程更加智能,同时让广告主、媒体在平台实现长期繁荣。广告主希望在有限的资源投入下最大化营销效果,平台希望能够建立更好的生态。然而流量环境、其他参竞广告形成的竞
机器之心
2023/03/29
3250
决策智能技术浪潮袭来,数智商业领域如何变革?来听听三位专家怎么说
《计算广告》笔记
我的博客: https://www.luozhiyun.com/archives/223
luozhiyun
2020/02/23
1.2K0
王喆:工作近十年的方向思考
导读:大家好,我是《深度学习推荐系统》的作者王喆,很多同行可能读过这本系统性介绍推荐系统的书,但大多数人可能不知道我职业生涯的头四年都在做广告系统,之后才在推荐系统方向工作了四年,这两年又回到了广告方向。既然是重操旧业,就不免想对计算广告这个方向做一次全面的再思考。
Datawhale
2023/01/10
2.3K0
王喆:工作近十年的方向思考
23000字,讲清信息流广告数据分析。
本篇主要内容大纲: 一、信息流广告基本介绍 (一)信息流广告的定义和特点 (二)信息流广告的行业发展 (三)信息流广告在产业链中的主要角色 (四)信息流广告常用术语 二、广告投放流程 (一)开户 (二)充值 (三)审核 (四)数据监测 (五)计费 三、广告投放的基本原理 (一)定向 (二)创意 (三)竞价 四、媒体平台的广告配置后台 (一)媒体资源 (二)媒体后台 (三)后台主要功能 五、信息流广告的创意 (一)信息流广告创意的特点 (二)信息量广告创意制作 (三)信息流广告创意的基本原则 六、视频创意方
张俊红
2023/03/21
1.6K0
23000字,讲清信息流广告数据分析。
计算广告笔记06-程序化交易广告
RTB的产生使得广告市场向着开放的竞价平台的方向发展,这样的平台就是广告交易平台,ADX,其主要特征是用RTB的方式实时得到广告候选,并按竞价逻辑完成投放决策。与广告交易平台对应的采买方为需求方平台即DSP。在程序化交易市场中,需求方对于流量的选择和控制能力达到了极致。
公众号-不为谁写的歌
2020/07/23
2.3K0
【论文笔记】Optimized Cost per Click in Taobao Display Advertising
淘宝作为世界上最大的电商平台,每天为上百万的广告主提供十亿多在线广告曝光的机会。从商业目的上说,广告主为特定的场景和目标人群进行竞标以竞争商业流量。平台方在十毫秒内选择合适的广告进行展现曝光。常见的出价方法有cpm和cpc。
公众号-不为谁写的歌
2020/08/11
2.2K0
【论文笔记】Optimized Cost per Click in Taobao Display Advertising
计算广告笔记-计算广告技术概览
计算广告是根据个体用户信息投送个性化内容的典型系统之一。在介绍计算广告系统的架构之前,先看看一般的个性化系统是如何构成的。
公众号-不为谁写的歌
2020/07/23
2.9K0
计算广告笔记-计算广告技术概览
互联网智能广告系统简易流程与架构 | 架构师之路
很多朋友估计没有做过这一块,争取最简洁的语言描述清楚。 一、业务简述 从业务上看 整个智能广告系统,主要分为: 1)业务端:广告主的广告后台 2)展现端:用户实际访问的页面 业务端,广告主主要有
架构师之路
2018/03/01
1.7K0
互联网智能广告系统简易流程与架构 | 架构师之路
计算广告关键技术:他们怎么什么都知道?
大数据文摘作品 转载具体要求见文末 作者|面包包包包包包 修改|寒小阳 && 龙心尘 上一期我们一起探索了计算广告的基本概念和四种形式(点击查看《计算广告小窥(上)》),本期文章是我们为读者带来的【计算广告小窥】专题的第二个部分。大数据文摘会在明天,为大家分享最后一个部分的文章内容,供有兴趣的读者感受、学习。 (上)(中)(下)全文目录 引言 广告=>互联网广告:“您好,了解一下” 互联网广告=>计算广告:指哪儿打哪儿! 计算广告四君子:谁在弄潮? 计算广告关键技术:这孙子怎么什么都知道? 广告系统
大数据文摘
2018/05/22
2.8K0
推荐阅读
相关推荐
广告、流量为王的当下,决策智能如何玩转数智商业场景
更多 >
LV.0
这个人很懒,什么都没有留下~
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档