Julia是一门为科学计算而生的编程语言,其着重强调了开源、生态与性能。从开源角度来说,相比于Matlab就要友好很多,用户可以免费使用,而且MIT协议应该是最宽松的开源协议之一:
而生态则是对标的C/C++语言,我们都知道python是一门生态非常强大的编程语言,各种轮子很大程度上减少了学习成本和工作量,而julia的目标也是如此。最后在性能上是对标的python,我们都知道python作为一门解释性语言,在性能上有较大的牺牲。除非我们使用c++或者fortran去构造动态链接库,然后通过python上层语言来封装,这样才能在性能上有所保障,但是工作量又被放大了。Julia的优势就在于可以达到接近于C语言的性能,同时又能像python一样易于编写,兼顾了性能与开发周期,对科学计算非常的友好。
如果我们直接搜索Julia在Manjaro Linux下的安装方法,很有可能搜到一个类似于参考链接4中所提供的方案。这个方案是从官网下载一个可执行文件,然后将该文件存放到系统路径下。虽然这也不失为一个比较通用的方法,但是我个人更倾向于从系统的源里面去寻找资源,而Manjaro Linux其实是有julia的资源的,只是会有一些依赖需要我们去独立安装。我们先尝试一下直接安装julia:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
[dechin-root 2021-softwares]# pacman -S julia
正在解析依赖关系...
正在查找软件包冲突...
警告:正在从目标清单中删除 'blas' ,因为它和 'openblas' 冲突
软件包 (11) cblas-3.9.0-3 lapack-3.9.0-3 libutf8proc-2.6.1-1 llvm10-libs-10.0.1-4
mbedtls-2.25.0-1 metis-5.1.0.p10-1 openblas-0.3.13-2 openlibm-0.7.5-1
suitesparse-5.9.0-1 tbb-2020.3-1 julia-2:1.5.4-1
下载大小: 51.24 MiB
全部安装大小: 272.10 MiB
:: 进行安装吗? [Y/n] Y
:: 正在获取软件包......
cblas-3.9.0-3-x86_64 33.9 KiB 4.73 MiB/s 00:00 [#############################] 100%
metis-5.1.0.p10-1-x86_64 166.6 KiB 2.71 MiB/s 00:00 [#############################] 100%
lapack-3.9.0-3-x86_64 2.3 MiB 9.36 MiB/s 00:00 [#############################] 100%
tbb-2020.3-1-x86_64 393.4 KiB 8.73 MiB/s 00:00 [#############################] 100%
suitesparse-5.9.0-1-x... 1101.7 KiB 9.44 MiB/s 00:00 [#############################] 100%
llvm10-libs-10.0.1-4-... 21.2 MiB 8.32 MiB/s 00:03 [#############################] 100%
openblas-0.3.13-2-x86_64 1448.8 KiB 6.97 MiB/s 00:00 [#############################] 100%
libutf8proc-2.6.1-1-x... 76.9 KiB 25.0 MiB/s 00:00 [#############################] 100%
mbedtls-2.25.0-1-x86_64 848.9 KiB 4.30 MiB/s 00:00 [#############################] 100%
openlibm-0.7.5-1-x86_64 111.5 KiB 4.03 MiB/s 00:00 [#############################] 100%
julia-2:1.5.4-1-x86_64 23.6 MiB 2.90 MiB/s 00:08 [#############################] 100%
(11/11) 正在检查密钥环里的密钥 [#############################] 100%
(11/11) 正在检查软件包完整性 [#############################] 100%
(11/11) 正在加载软件包文件 [#############################] 100%
(11/11) 正在检查文件冲突 [#############################] 100%
(11/11) 正在检查可用存储空间 [#############################] 100%
:: 正在处理软件包的变化...
( 1/11) 正在安装 openblas [#############################] 100%
( 2/11) 正在安装 cblas [#############################] 100%
( 3/11) 正在安装 libutf8proc [#############################] 100%
( 4/11) 正在安装 metis [#############################] 100%
( 5/11) 正在安装 lapack [#############################] 100%
( 6/11) 正在安装 tbb [#############################] 100%
( 7/11) 正在安装 suitesparse [#############################] 100%
( 8/11) 正在安装 mbedtls [#############################] 100%
( 9/11) 正在安装 openlibm [#############################] 100%
(10/11) 正在安装 llvm10-libs [#############################] 100%
(11/11) 正在安装 julia [#############################] 100%
julia 的可选依赖
gnuplot: If using the Gaston Package from julia
:: 正在运行事务后钩子函数...
(1/3) Arming ConditionNeedsUpdate...
(2/3) Updating icon theme caches...
(3/3) Updating the desktop file MIME type cache...
安装下来倒是没报错,看起来没什么问题,我们执行一下julia的命令行试试:
1
2
[dechin-root 2021-softwares]# julia
julia: /usr/bin/../lib/libc.so.6: version `GLIBC_2.33' not found (required by /usr/bin/../lib/libjulia.so.1)
这一下问题就暴露出来了,有glibc
这个依赖需要我们手动安装,在无损音乐网上搜了一下方案,直接安装和升级以下两个库即可:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
[dechin-root 2021-softwares]# pacman -S glibc lib32-glibc
正在解析依赖关系...
正在查找软件包冲突...
软件包 (2) glibc-2.33-4 lib32-glibc-2.33-4
下载大小: 13.35 MiB
全部安装大小: 64.42 MiB
净更新大小: -0.34 MiB
:: 进行安装吗? [Y/n] Y
:: 正在获取软件包......
glibc-2.33-4-x86_64 9.8 MiB 9.46 MiB/s 00:01 [#############################] 100%
lib32-glibc-2.33-4-x86_64 3.5 MiB 9.56 MiB/s 00:00 [#############################] 100%
(2/2) 正在检查密钥环里的密钥 [#############################] 100%
(2/2) 正在检查软件包完整性 [#############################] 100%
(2/2) 正在加载软件包文件 [#############################] 100%
(2/2) 正在检查文件冲突 [#############################] 100%
(2/2) 正在检查可用存储空间 [#############################] 100%
:: 正在处理软件包的变化...
(1/2) 正在更新 glibc [#############################] 100%
Generating locales...
en_US.UTF-8... done
zh_CN.UTF-8... done
Generation complete.
(2/2) 正在更新 lib32-glibc [#############################] 100%
:: 正在运行事务后钩子函数...
(1/5) Reloading system manager configuration...
(2/5) Creating temporary files...
(3/5) Arming ConditionNeedsUpdate...
(4/5) Restarting cronie for libc upgrade...
(5/5) Updating the info directory file...
安装完成后我们再试一下julia的指令:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
[dechin-root 2021-softwares]# julia
_
_ _ _(_)_ | Documentation: https://docs.julialang.org
(_) | (_) (_) |
_ _ _| |_ __ _ | Type "?" for help, "]?" for Pkg help.
| | | | | | |/ _` | |
| | |_| | | | (_| | | Version 1.5.4 (2021-03-11)
_/ |\__'_|_|_|\__'_| |
|__/ |
julia> 1+2
3
julia> ans
3
julia> println("Hello World!")
Hello World!
当我们看到这个界面的时候,就表示julia已经安装成功了。
我们来测试一下julia执行简单的张量网络缩并的功能。这里用julia来计算张量网络的话会依赖于Einsum
这个第三方包,需要我们来手动安装。首先我们测试一下直接调用这个包的指令,如果这个包已经被安装了,那么调用就不会报错:
1
2
3
4
5
6
julia> using Einsum
ERROR: ArgumentError: Package Einsum not found in current path:
- Run `import Pkg; Pkg.add("Einsum")` to install the Einsum package.
Stacktrace:
[1] run_repl(::REPL.AbstractREPL, ::Any) at /build/julia/src/julia-1.5.4/usr/share/julia/stdlib/v1.5/REPL/src/REPL.jl:288
这里我们发现系统中是没有这个库的,而这里调用的时候也已经提示了我们安装这个包的方法,我们可以尝试直接按照这个指令来安装:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
julia> import Pkg
julia> Pkg.add("Einsum")
Installing known registries into `~/.julia`
######################################################################## 100.0%
Added registry `General` to `~/.julia/registries/General`
Resolving package versions...
Installed Compat ─ v3.25.0
Installed Einsum ─ v0.4.1
Updating `~/.julia/environments/v1.5/Project.toml`
[b7d42ee7] + Einsum v0.4.1
Updating `~/.julia/environments/v1.5/Manifest.toml`
[34da2185] + Compat v3.25.0
[b7d42ee7] + Einsum v0.4.1
[2a0f44e3] + Base64
[ade2ca70] + Dates
[8bb1440f] + DelimitedFiles
[8ba89e20] + Distributed
[b77e0a4c] + InteractiveUtils
[76f85450] + LibGit2
[8f399da3] + Libdl
[37e2e46d] + LinearAlgebra
[56ddb016] + Logging
[d6f4376e] + Markdown
[a63ad114] + Mmap
[44cfe95a] + Pkg
[de0858da] + Printf
[3fa0cd96] + REPL
[9a3f8284] + Random
[ea8e919c] + SHA
[9e88b42a] + Serialization
[1a1011a3] + SharedArrays
[6462fe0b] + Sockets
[2f01184e] + SparseArrays
[10745b16] + Statistics
[8dfed614] + Test
[cf7118a7] + UUIDs
[4ec0a83e] + Unicode
安装过程没有什么问题,那我们再次调用看看:
1
2
julia> using Einsum
[ Info: Precompiling Einsum [b7d42ee7-0b51-5a75-98ca-779d3107e4c0]
调用没有问题,说明我们这个包是安装成功了。接下来正式测试一下张量网络缩并的案例:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
julia> A = zeros(5,6,7)
5×6×7 Array{Float64,3}:
[:, :, 1] =
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
[:, :, 2] =
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
[:, :, 3] =
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
[:, :, 4] =
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
[:, :, 5] =
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
[:, :, 6] =
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
[:, :, 7] =
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
julia> X = randn(5,2)
5×2 Array{Float64,2}:
-0.573591 0.550235
-0.893529 -1.25679
-0.338177 0.632082
-0.304742 2.67068
-0.171912 -0.714813
julia> Y = randn(6,2)
6×2 Array{Float64,2}:
-0.609149 -0.815229
0.199472 0.554751
-0.562527 0.259988
-1.65124 1.08916
-0.625242 -0.0391435
-0.943587 -0.695565
julia> Z = randn(7,2)
7×2 Array{Float64,2}:
0.311165 0.555719
-0.486201 -1.26421
-1.90713 0.738125
-1.26129 -0.274261
-0.570305 -0.295527
-0.182373 -0.0410972
-0.213648 -0.12244
julia> @einsum A[i,j,k] = X[i,r]*Y[j,r]*Z[k,r]
5×6×7 Array{Float64,3}:
[:, :, 1] =
-0.140556 0.134027 0.179899 0.627755 0.0996249 -0.0442743
0.738739 -0.442911 -0.0251791 -0.30159 0.201178 0.748148
-0.222257 0.173872 0.150518 0.556337 0.052044 -0.145031
-1.15216 0.804416 0.439202 1.77305 0.00119409 -0.942843
0.356423 -0.231037 -0.0731852 -0.344323 0.0489952 0.326778
[:, :, 2] =
0.397202 -0.330261 -0.337728 -1.21813 -0.147139 0.220694
-1.5599 0.968069 0.168698 1.01314 -0.333819 -1.51507
0.551277 -0.410494 -0.300243 -1.14183 -0.0715246 0.400667
2.66219 -1.84344 -0.96114 -3.92197 0.0395199 2.20862
-0.787613 0.517985 0.187925 0.846224 -0.0876327 -0.70743
[:, :, 3] =
-0.997453 0.443513 -0.509762 -1.36396 -0.699856 -1.3147
-0.281771 -0.174709 -1.19977 -3.82422 -1.02915 -0.962687
-0.773218 0.387471 -0.241501 -0.55681 -0.42151 -0.933083
-1.96108 1.20951 0.185581 1.18738 -0.440543 -1.91956
0.230419 -0.2273 -0.321604 -1.11604 -0.184337 0.0576331
[:, :, 4] =
-0.317672 0.0605948 -0.446202 -1.35898 -0.446433 -0.577685
-0.967509 0.416021 -0.544352 -1.48553 -0.718138 -1.30317
-0.118501 -0.0110862 -0.28501 -0.89313 -0.259904 -0.281897
0.362986 -0.329663 -0.406649 -1.43245 -0.211652 0.146789
-0.291903 0.152008 -0.0710035 -0.144515 -0.143245 -0.34096
[:, :, 5] =
-0.0667018 -0.0249559 -0.226291 -0.717264 -0.198165 -0.195562
-0.6132 0.307691 -0.190091 -0.436916 -0.333152 -0.73918
0.0347997 -0.0651548 -0.157056 -0.521917 -0.113275 -0.0520544
0.537557 -0.403173 -0.302962 -1.1466 -0.0777703 0.384987
-0.231936 0.136746 -0.000229789 0.0681898 -0.0695689 -0.239447
[:, :, 6] =
-0.0452868 0.00832171 -0.0647238 -0.197362 -0.06452 -0.0829776
-0.141371 0.0611584 -0.0782386 -0.212824 -0.103909 -0.189689
-0.0163919 -0.00210828 -0.0414473 -0.130132 -0.0375447 -0.0401267
0.0556227 -0.0498019 -0.0597991 -0.211314 -0.0304527 0.0239016
-0.0430469 0.0225507 -0.00999881 -0.0197739 -0.0207526 -0.0500169
[:, :, 7] =
-0.0197261 -0.0129295 -0.0864512 -0.275731 -0.0739839 -0.0687722
-0.241735 0.123445 -0.0673792 -0.147621 -0.125382 -0.287166
0.019081 -0.0285214 -0.0607641 -0.203596 -0.0421448 -0.0143435
0.226918 -0.168415 -0.12164 -0.463661 -0.0279081 0.166014
-0.0937235 0.0558792 0.00209385 0.0346776 -0.0263901 -0.0955337
在上面这个案例中,我们事先定义好了一个张量A
用于存放计算结果,如果我们不事先定义的话,就需要按照以下示例来使用:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
julia> @einsum B[i,j,k] := X[i,r]*Y[j,r]*Z[k,r]
5×6×7 Array{Float64,3}:
[:, :, 1] =
-0.140556 0.134027 0.179899 0.627755 0.0996249 -0.0442743
0.738739 -0.442911 -0.0251791 -0.30159 0.201178 0.748148
-0.222257 0.173872 0.150518 0.556337 0.052044 -0.145031
-1.15216 0.804416 0.439202 1.77305 0.00119409 -0.942843
0.356423 -0.231037 -0.0731852 -0.344323 0.0489952 0.326778
[:, :, 2] =
0.397202 -0.330261 -0.337728 -1.21813 -0.147139 0.220694
-1.5599 0.968069 0.168698 1.01314 -0.333819 -1.51507
0.551277 -0.410494 -0.300243 -1.14183 -0.0715246 0.400667
2.66219 -1.84344 -0.96114 -3.92197 0.0395199 2.20862
-0.787613 0.517985 0.187925 0.846224 -0.0876327 -0.70743
[:, :, 3] =
-0.997453 0.443513 -0.509762 -1.36396 -0.699856 -1.3147
-0.281771 -0.174709 -1.19977 -3.82422 -1.02915 -0.962687
-0.773218 0.387471 -0.241501 -0.55681 -0.42151 -0.933083
-1.96108 1.20951 0.185581 1.18738 -0.440543 -1.91956
0.230419 -0.2273 -0.321604 -1.11604 -0.184337 0.0576331
[:, :, 4] =
-0.317672 0.0605948 -0.446202 -1.35898 -0.446433 -0.577685
-0.967509 0.416021 -0.544352 -1.48553 -0.718138 -1.30317
-0.118501 -0.0110862 -0.28501 -0.89313 -0.259904 -0.281897
0.362986 -0.329663 -0.406649 -1.43245 -0.211652 0.146789
-0.291903 0.152008 -0.0710035 -0.144515 -0.143245 -0.34096
[:, :, 5] =
-0.0667018 -0.0249559 -0.226291 -0.717264 -0.198165 -0.195562
-0.6132 0.307691 -0.190091 -0.436916 -0.333152 -0.73918
0.0347997 -0.0651548 -0.157056 -0.521917 -0.113275 -0.0520544
0.537557 -0.403173 -0.302962 -1.1466 -0.0777703 0.384987
-0.231936 0.136746 -0.000229789 0.0681898 -0.0695689 -0.239447
[:, :, 6] =
-0.0452868 0.00832171 -0.0647238 -0.197362 -0.06452 -0.0829776
-0.141371 0.0611584 -0.0782386 -0.212824 -0.103909 -0.189689
-0.0163919 -0.00210828 -0.0414473 -0.130132 -0.0375447 -0.0401267
0.0556227 -0.0498019 -0.0597991 -0.211314 -0.0304527 0.0239016
-0.0430469 0.0225507 -0.00999881 -0.0197739 -0.0207526 -0.0500169
[:, :, 7] =
-0.0197261 -0.0129295 -0.0864512 -0.275731 -0.0739839 -0.0687722
-0.241735 0.123445 -0.0673792 -0.147621 -0.125382 -0.287166
0.019081 -0.0285214 -0.0607641 -0.203596 -0.0421448 -0.0143435
0.226918 -0.168415 -0.12164 -0.463661 -0.0279081 0.166014
-0.0937235 0.0558792 0.00209385 0.0346776 -0.0263901 -0.0955337
这里我们可以发现,julia的变量定义形式跟python是类似的,并不需要事先声明变量的具体类型。
在上面一个案例中我们执行了一个简单的功能测试,并介绍了julia的包的安装,这里我们再介绍一下julia语言的一些基本用法。
最常用的julia的函数功能也是一个挺有意思的定义方法,我们可以直接对函数进行赋值来使用:
1
2
3
4
5
julia> ∑(x,y)=x+y
∑ (generic function with 1 method)
julia> ∑(3,5)
8
这里我们就定义了∑
这样的一个函数。顺带一说,这些常见的希腊字母在julia中可以先按照latex的语法来写,然后Tab一下就可以弹出来具体字符。比如∑
实际上是\sum<Tab>
。
关于julia的注释没有太多好说的,单行注释跟python的一致,多行注释是#= comments =#
这样的结构(空格是非必须的):
1
2
3
4
5
6
7
julia> # This is a comment!
julia> #= Test comment line1;
Test comment line2 =#
julia> #=Test comment line1
Test comment line2=#
跟python的py文件类似的,julia可以将代码写入一个jl文件,再通过julia module.jl
这样的形式来调用:
1
2
3
[dechin-root julia]# echo 'println("Hello World!")' > helloworld.jl
[dechin-root julia]# julia helloworld.jl
Hello World!
通过PyCall
这个包,我们可以在julia内部调用python代码。而类似于上述章节中的Einsum
,这里我们也需要用Pkg
来安装一下这个包:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
julia> import Pkg
julia> Pkg.add("PyCall")
Updating registry at `~/.julia/registries/General`
Resolving package versions...
Installed VersionParsing ─ v1.2.0
Installed Parsers ──────── v1.0.16
Installed Conda ────────── v1.5.1
Installed MacroTools ───── v0.5.6
Installed PyCall ───────── v1.92.2
Installed JSON ─────────── v0.21.1
Updating `~/.julia/environments/v1.5/Project.toml`
[438e738f] + PyCall v1.92.2
Updating `~/.julia/environments/v1.5/Manifest.toml`
[8f4d0f93] + Conda v1.5.1
[682c06a0] + JSON v0.21.1
[1914dd2f] + MacroTools v0.5.6
[69de0a69] + Parsers v1.0.16
[438e738f] + PyCall v1.92.2
[81def892] + VersionParsing v1.2.0
Building Conda ─→ `~/.julia/packages/Conda/tJJuN/deps/build.log`
Building PyCall → `~/.julia/packages/PyCall/tqyST/deps/build.log`
安装成功后,可以按照如下方法引入一个python的函数来执行计算任务:
1
2
3
4
5
6
7
8
julia> using PyCall
[ Info: Precompiling PyCall [438e738f-606a-5dbb-bf0a-cddfbfd45ab0]
julia> math = pyimport("math")
PyObject <module 'math' from '/home/dechin/anaconda3/lib/python3.8/lib-dynload/math.cpython-38-x86_64-linux-gnu.so'>
julia> math.sin(math.pi / 4)
0.7071067811865475
这里可以看到我们调用python中的math函数计算了一个正弦函数值。
macro
是julia语言中的一个关键字,这里还不知道怎么去翻译它,说起来功能是类似于python中的歌曲下载装饰器(decorator)
的概念,其实基本概念是跟模块化编程相关的,通过向上封装的方法丰富了接口调用的方法。macro的官方示例如下:
1
2
3
4
5
6
7
julia> macro sayhello(name)
return :( println("Hello, ", $name, "!") )
end
@sayhello (macro with 1 method)
julia> @sayhello "Charlie"
Hello, Charlie!
在这篇文章中我们介绍了julia编程语言的一些基本特点,这是一门兼顾了高性能与高效开发的编程语言,而且开源免费。不仅具备有python的便捷性,还有接近于C语言的高性能特性,是一门为科学计算而生的编程语言。我们介绍了其在Manjaro Linux平台下的安装方法,及其基本使用方法,如变量定义、函数定义和调用、包的管理以及与python编程语言的协同工作。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。