前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >推荐系统遇上深度学习(一一一)-双重样本感知的DIFM模型

推荐系统遇上深度学习(一一一)-双重样本感知的DIFM模型

作者头像
石晓文
发布于 2021-03-23 13:12:57
发布于 2021-03-23 13:12:57
1.4K0
举报
文章被收录于专栏:小小挖掘机小小挖掘机

上一篇中,我们介绍了样本感知的FM模型,也就是IFM模型。而本文将介绍其改进版本,称为Dual Input-aware Factorization Machine(DIFM),一起来学习下。

1、背景

因子分解机(Factorization machine,FM)已经被成功地应用于各种推荐系统中。同时,许多的研究工作聚焦于从特征交互角度来提升FM模型的效果,如DeepFM将FM和DNN进行结合,建模特征之间的二阶和高阶交互,AFM通过引入attention思想,建模不同特征交互的重要性。

但是上述工作忽略了样本的独特性,举例来说,当样本是<青少年,女性,学生,喜欢粉色>,预测是否会点击<连衣裙>,此时女性这个特征会起到较为关键的作用;当样本是<青少年,女性,学生,喜欢蓝色>,预测是否会点击<笔记本>,此时女性这个特征就相对来说没有那么重要。因此,同一个特征在不同样本中应该被赋予不同的重要程度以更好地反映其具体贡献。

基于上述思路,上一篇文章我们介绍了样本感知的FM模型( Input-aware Factorization Ma- chine,IFM)来显式建模不同特征在不同样本的影响程度。下图是IFM的模型结构:

其中,FEN结构如下:

在IFM中,使用DNN结构来计算input-aware factors,这种方式是bit-wise level的,也就是说,特征的embedding的不同元素之间会相互影响;另一方面,在CTR预估领域,使用NN网络来学习input-aware factors是否是最有效的,这一点也有待商榷。

本文在IFM的基础上,在网络中加入了transformer,进一步在vector-wise level学习input-aware factors,提出了Dual Input-aware Factorization Machine (DIFM)。Dual这里我们翻译为双重,意思是既包括bit-wise的建模,又包括vector-wise的建模。接下来,一起来看一下DIFM网络结构。

2、DIFM模型

DIFM的结构如下图所示:

接下来,按照从下到上的顺序,依次介绍模型的几个部分:

2.1 Sparse Input and Embedding Layer

假设输入样本中有h个域,每个域中只有一位取值为1,其余取值为0,那么经过embeding层,共得到h个长度为k的embedding向量。将这些向量转置后横向拼接,得到Ex:

2.2 Dual-Factor Estimating Networks (Dual-FEN) Layer

这一层也是论文的主要创新点所在,其结构如下,主要包含vector-wise part和bit-wise part。

vector-vise part

vector-vise part主要借鉴transformer中encoder的block结构,其结构如下:

首先,针对embedding layer的输出Ex,首先reshape为h*k的矩阵:

随后,分别经过Multi-Head Self Attention和Residual Network得到两部分输出,同transformer的block结构,论文也加入了Residual Network部分来保存原始embedding向量的有效信息。具体地,Multi-Head Self Attention的计算过程如下:

而Residual Network的计算如下:

随后两部分进行对位相加,并经过激活函数激活,得到vector-wise part的输出,计作Ovec。

bit-wise part

bit-wise part同IFM,其结构如下,输入为Ex,经过多层全连接网络,输出计作Obit:

Combination Layer

这一层主要是将vector-wise part和bit-wise part的输出进行结合,但二者输出维度不相同,需要通过矩阵分别转化为长度为h的向量:

随后,二者进行对位相加:

Reweighting Layer

经过Combination Layer得到输出mx,就可以对样本每个特征的一次项权重和embedding向量进行refine,计算公式如下:

Prediction Layer

DIFM的预测公式如下所示:

同FM一样,DIFM在预测时,也可以对公式进行相应的化简,其结果如下:

3、实验结果

论文对比了DIFM和FM等bese模型在不同数据集上的表现,其结果如下:

同时,论文对比了不同的网络结构的效果:

好了,论文就介绍到这里,感兴趣的同学可以下载论文进行阅读哟~~

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2021-03-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小小挖掘机 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
深入理解推荐系统:特征交叉组合模型演化简史
深入理解推荐系统:Fairness、Bias和Debias​mp.weixin.qq.com
Coggle数据科学
2020/11/03
2.8K0
深入理解推荐系统:特征交叉组合模型演化简史
【推荐系统】深入理解推荐系统:无需人工特征工程的xDeepFM
作为【推荐系统】系列文章的第十五篇,将以“xDeepFM”作为今天的主角,中科大、北大与微软合作发表在 KDD’18 的文章:《xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems》。本文主要对xDeepFM进行详细描述,并进行代码实现。
黄博的机器学习圈子
2021/07/07
1.2K0
【推荐系统】深入理解推荐系统:无需人工特征工程的xDeepFM
XDeepFM高阶特征交互,特征交互:一种极深因子分解机模型
对于预测性的系统来说,特征工程起到了至关重要的作用。特征工程中,挖掘交叉特征是至关重要的。交叉特征指的是两个或多个原始特征之间的交叉组合。例如,在新闻推荐场景中,一个三阶交叉特征为AND(user_organization=msra,item_category=deeplearning,time=monday_morning),它表示当前用户的工作单位为微软亚洲研究院,当前文章的类别是与深度学习相关的,并且推送时间是周一上午。
机器学习AI算法工程
2019/10/28
1.9K0
XDeepFM高阶特征交互,特征交互:一种极深因子分解机模型
推荐系统遇上深度学习(八十六)-[腾讯&微博]GateNet:使用门机制提升点击率预估效果
本文介绍的论文是《GateNet:Gating-Enhanced Deep Network for Click-Through Rate Prediction》 下载地址为:https://arxiv.org/pdf/2007.03519.pdf
石晓文
2020/07/15
2.2K1
推荐系统遇上深度学习(八十六)-[腾讯&微博]GateNet:使用门机制提升点击率预估效果
推荐系统遇上深度学习(二十二)--DeepFM升级版XDeepFM模型强势来袭!
今天我们要学习的模型是xDeepFM模型,论文地址为:https://arxiv.org/abs/1803.05170。文中包含我个人的一些理解,如有不对的地方,欢迎大家指正!废话不多说,我们进入正题!
石晓文
2018/10/23
2.1K0
推荐系统遇上深度学习(二十二)--DeepFM升级版XDeepFM模型强势来袭!
深入理解推荐系统:微软xDeepFM原理与实践
上面的所有模型都使用DNN来学习高阶特征交叉。然而,DNN可以以一个隐式的方式建模高阶特征交叉。由DNN学到的最终函数可以是任意形式,关于特征交叉的最大阶数(maximum degree)没有理论上的结论。另外,DNNs在bit-wise级别建模征交叉,这与FM框架不同(它会在vector-wise级别建模)。这样,在推荐系统的领域,其中DNN是否是用于表示高阶特征交叉的最有效模型,仍然是一个开放问题。在本paper中,我们提供了一个基于NN的模型,以显式、vector-wise的方式来学习特征交叉。我们的方法基于DCN(Deep&Cross Network)之上,该方法能有效捕获有限阶数(bounded degree)的特征交叉。然而,我们会在第2.3节讨论,DCN将带来一种特殊形式的交叉。我们设计了一种新的压缩交叉网络CIN(compressed interaction network)来替换在DCN中的cross network。CIN可以显式地学到特征交叉,交叉的阶数会随着网络depth增长。根据Wide&Deep模型和DeepFM模型的精神,我们会结合显式高阶交叉模块和隐式交叉模型,以及传统的FM模块,并将该联合模型命名为“eXtreme Deep Factorization Machine (xDeepFM)”。这种新模型无需人工特征工程,可以让数据科学家们从无聊的特征搜索中解放出来。总结一下,主要有三个贡献:
Coggle数据科学
2022/08/31
1.3K0
深入理解推荐系统:微软xDeepFM原理与实践
算法大佬看了流泪,为什么这么好的CTR预估总结之前没分享(上篇)
在广告、推荐系统CTR预估问题上,早期的完全规则方法被过渡到以LR为代表的机器学习方法,为了充分发挥组合特征的价值,在相当长一段时间里,业界热衷于使用LR+人工特征工程。但人工组合特征成本高昂 ,在不同任务上也难以复用。2010年FM因子分解方法的出现解决了人工组合特征的困境,2014年Facebook提出的GBDT+LR也给出了一种利用树模型特点构建组合特征的思路。不过随着深度学习的崛起,2015年以后,借助非线性自动组合特征能力的深度模型,开始成为业内的主流。从经典DNN到结合浅层的Wide&Deep,用于CTR预估的深度模型在近些年间百花盛开,各种交叉特征建模方法层出不穷,Attention机制也从其他研究领域引入,帮助更好的适应业务,提升模型的解释性。在这进化路线之下,核心问题离不开解决数据高维稀疏难题,自动化组合特征,模型可解释。我们梳理了近些年CTR预估问题中有代表性的模型研究/应用成果,并对部分经典模型的实现原理进行详细剖析,落成文字作为学习过程的记录。
炼丹笔记
2021/05/14
5.3K0
算法大佬看了流泪,为什么这么好的CTR预估总结之前没分享(上篇)
CTR学习笔记&代码实现6-深度ctr模型 后浪 xDeepFM/FiBiNET
xDeepFM用改良的DCN替代了DeepFM的FM部分来学习组合特征信息,而FiBiNET则是应用SENET加入了特征权重比NFM,AFM更进了一步。在看两个model前建议对DeepFM, Deep&Cross, AFM,NFM都有简单了解,不熟悉的可以看下文章最后其他model的博客链接。
风雨中的小七
2020/06/02
1.8K0
CTR学习笔记&代码实现6-深度ctr模型 后浪 xDeepFM/FiBiNET
【深度好文】推荐系统中的深度匹配模型
关于作者 辛俊波,腾讯算法数据中心\应用算法组 导语I推荐系统和搜索应该是机器学习乃至深度学习在工业界落地应用最多也最容易变现的场景。而无论是搜索还是推荐,本质其实都是匹配,搜索的本质是给定 query,匹配 doc;推荐的本质是给定 user,推荐 item。本文主要讲推荐系统里的匹配问题,包括传统匹配模型和深度学习模型。 深度学习之风虽然愈演愈烈,但背后体现的矩阵分解思想、协同过滤思想等其实一直都是贯穿其中,如 svd++ 体现的 userCF 和 itemCF 的思想,FM 模型本质上可以退化成以上
腾讯大讲堂
2020/02/12
2.2K0
【深度好文】推荐系统中的深度匹配模型
推荐系统遇上深度学习(七)--NFM模型理论和实践
在CTR预估中,为了解决稀疏特征的问题,学者们提出了FM模型来建模特征之间的交互关系。但是FM模型只能表达特征之间两两组合之间的关系,无法建模两个特征之间深层次的关系或者说多个特征之间的交互关系,因此学者们通过Deep Network来建模更高阶的特征之间的关系。
石晓文
2018/07/25
1.7K0
推荐系统遇上深度学习(七)--NFM模型理论和实践
推荐系统提纲笔记
相关图文Xmind、PDF、视频讲解、代码,请参阅语雀地址:https://www.yuque.com/chudi/tzqav9/ny150b
小爷毛毛_卓寿杰
2022/09/30
4720
Wide&Deep、DCN、xDeepFM、DIN、GateNet、IPRec…你都掌握了吗?一文总结推荐系统必备经典模型(三)
 机器之心专栏 本专栏由机器之心SOTA!模型资源站出品,每周日于机器之心公众号持续更新。 本专栏将逐一盘点自然语言处理、计算机视觉等领域下的常见任务,并对在这些任务上取得过 SOTA 的经典模型逐一详解。前往 SOTA!模型资源站(sota.jiqizhixin.com)即可获取本文中包含的模型实现代码、预训练模型及 API 等资源。 本文将分 3 期进行连载,共介绍 18 个在推荐系统任务上曾取得 SOTA 的经典模型。 第 1 期:DSSM、Youtube_DNN、SASRec、PinSAGE、TDM
机器之心
2023/04/06
1.5K0
Wide&Deep、DCN、xDeepFM、DIN、GateNet、IPRec…你都掌握了吗?一文总结推荐系统必备经典模型(三)
一文读懂CTR预估模型的发展历程
CTR预估是搜索、推荐、广告等领域基础且重要的任务,主要目标是预测用户在当前上下文环境下对某一个候选(视频、商品、广告等) 发生点击的概率。CTR预估从最原始的逻辑回归模型,发展到FM、深度学习模型等,经历了一个不断创新的过程,其核心为如何设计、融合不同的特征交叉方式。本文从FM和DNN开始开始,带你梳理CTR预估模型的发展历程,包括FNN、PNN、Wide&Deep、DCN、DeepFM、xDeepFM等一系列CTR预估模型和它们之间发展演进的关系。
圆圆的算法笔记
2022/09/22
1.4K0
一文读懂CTR预估模型的发展历程
7大特征交互模型,最好的深度学习推荐算法总结
👆点击“博文视点Broadview”,获取更多书讯 深度学习自出现以来,不断改变着人工智能领域的技术发展,推荐系统领域的研究同样也受到了深远的影响。 一方面,研究人员利用深度学习技术提升传统推荐算法的能力;另一方面,研究人员尝试用深度学习的思想来设计新的推荐算法。 基于深度学习的推荐算法研究不仅在学术界百花齐放,目前也受到了工业界的重视和广泛采用。深度学习具有强大的表征学习和函数拟合能力,它能在众多方面改革传统的推荐算法,如协同过滤、特征交互、图表示学习、序列推荐、知识融合及深度强化学习。下面将介绍推荐系
博文视点Broadview
2022/08/26
2.2K0
7大特征交互模型,最好的深度学习推荐算法总结
推荐系统遇上深度学习(二十一)--阶段性回顾
本系列已经写了二十篇了,但推荐系统的东西还有很多值得探索和学习的地方。不过在这之前,我们先静下心来,一起回顾下之前学习到的东西!
石晓文
2018/07/25
2.9K0
推荐系统遇上深度学习(二十一)--阶段性回顾
推荐系统遇上深度学习(一零一)-[阿里]时间感知的深度物品演化网络
今天介绍的论文是阿里在CIKM20上发表的一篇文章,标题为《Deep Time-Aware Item Evolution Network for Click-Through Rate Prediction》,之前介绍的阿里的论文大都是从用户行为序列出发,来建模用户的兴趣表示,而缺少对候选物品的更为丰富的建模,而本文则是从物品的角度出发,将物品行为引入到网络中,一起来看一下。
石晓文
2020/11/24
1K0
推荐系统遇上深度学习(一零一)-[阿里]时间感知的深度物品演化网络
基于评论文本的深度推荐系统总结
本文主要总结下近几年结合评论文本的推荐系统 (Review-based Recommendation),侧重深度学习的模型,并且开源了一个代码库: Neu-Review-Rec(https://github.com/ShomyLiu/Neu-Review-Rec) 主要完成了数据处理,模型构建,baseline复现等完整的Pipeline。
张小磊
2020/05/08
3.4K0
基于评论文本的深度推荐系统总结
推荐系统遇上深度学习(八)--AFM模型理论和实践
在CTR预估中,为了解决稀疏特征的问题,学者们提出了FM模型来建模特征之间的交互关系。但是FM模型只能表达特征之间两两组合之间的关系,无法建模两个特征之间深层次的关系或者说多个特征之间的交互关系,因此学者们通过Deep Network来建模更高阶的特征之间的关系。
石晓文
2018/07/25
2.3K1
推荐系统遇上深度学习(八)--AFM模型理论和实践
2、推荐广告算法模型之特征交叉模型
自动特征交叉模型包括:FM系列(FM、FFM、AFM)、Embedding+MLP(FNN、PNN、NFM、ONN)、双路并行(Wide&Deep、DeepFM、DCN、xDeepFM、AutoINT)
用户2794661
2022/08/04
8420
推荐系统遇上深度学习(三)--DeepFM模型理论和实践
推荐系统遇上深度学习系列: 推荐系统遇上深度学习(一)--FM模型理论和实践 推荐系统遇上深度学习(二)--FFM模型理论和实践 1、背景 特征组合的挑战 对于一个基于CTR预估的推荐系统,最重要的是学习到用户点击行为背后隐含的特征组合。在不同的推荐场景中,低阶组合特征或者高阶组合特征可能都会对最终的CTR产生影响。 之前介绍的因子分解机(Factorization Machines, FM)通过对于每一维特征的隐变量内积来提取特征组合。最终的结果也非常好。但是,虽然理论上来讲FM可以对高阶特征组合
石晓文
2018/04/17
3.5K0
推荐系统遇上深度学习(三)--DeepFM模型理论和实践
推荐阅读
相关推荐
深入理解推荐系统:特征交叉组合模型演化简史
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档