Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >揭秘深度相机--飞行时间(TOF)

揭秘深度相机--飞行时间(TOF)

作者头像
小白学视觉
发布于 2019-10-24 04:22:16
发布于 2019-10-24 04:22:16
1.8K0
举报

深度相机按照深度测量原理不同,一般分为:飞行时间法、结构光法、双目立体视觉法。本文就来说一说飞行时间法。

飞行时间是从Time of Flight直译过来的,简称TOF。其基本原理是通过连续发射光脉冲(一般为不可见光)到被观测物体上,然后接收从物体反射回去的光脉冲,通过探测光脉冲的飞行(往返)时间来计算被测物体离相机的距离。

TOF法根据调制方法的不同,一般可以分为两种:脉冲调制(Pulsed Modulation)和连续波调制(Continuous Wave Modulation)。

飞行时间法深度测量基本原理示意图

脉冲调制

脉冲调制方案的原理比较简单,如下图所示。它直接根据脉冲发射和接收的时间差来测算距离。

光脉冲法工作原理示意图

脉冲调制方案的照射光源一般采用方波脉冲调制,这是因为它用数字电路来实现相对容易。接收端的每个像素都是由一个感光单元(如光电二极管)组成,它可以将入射光转换为电流,感光单元连接着多个高频转换开关(下图的G0,G1)可以把电流导入不同的可以储存电荷(下图S0,S1)的电容里。

相机上的控制单元打开光源然后再关闭,发出一个光脉冲。在同一时刻,控制单元打开和关闭接收端的电子快门。接收端接收到的电荷S0被存储在感光元件中。

然后,控制单元第二次打开并关闭光源。这次快门打开时间较晚,即在光源被关闭的时间点打开。新接收到的电荷S1也被存储起来。具体过程如下图所示。

因为单个光脉冲的持续时间非常短,此过程会重复几千次,直到达到曝光时间。然后感光传感器中的值会被读出,实际距离可以根据这些值来计算。

记光的速度为c,tp为光脉冲的持续时间, S0表示较早的快门收集的电荷, S1表示延迟的快门收集的电荷,那么距离d可以由如下公式计算:

最小的可测量距离是:在较早的快门期间S0中收集了所有的电荷,而在延迟的快门期间S1没有收集到电荷,即S1 = 0。代入公式会得出最小可测量距离d=0。

最大的可测量的距离是:在S1中收集了所有电荷,而在S0中根本没有收集到电荷。然后,该公式得出d= 0.5 x c × tp。因此最大可测量距离是通过光脉冲宽度来确定的。例如,tp = 50 ns,代入上式,得到最大测量距离d = 7.5m。

优点:

  1. 测量方法简单,响应较快
  2. 由于发射端能量较高,所以一定程度上降低了背景光的干扰

缺点:

  1. 发射端需要产生高频高强度脉冲,对物理器件性能要求很高
  2. 对时间测量精度要求较高
  3. 环境散射光对测量结果有一定影响

连续波调制

实际应用中,通常采用的是正弦波调制。由于接收端和发射端正弦波的相位偏移和物体距离摄像头的距离成正比(见后面推导),因此可以利用相位偏移来测量距离。

连续波调制原理示意图

连续波调制的测量原理相对脉冲调制来说复杂一些,我们以最常用的连续正弦波调制来推导一下测量的原理。

连续正弦波调制测量方法示意图

连续正弦波调制测量方法,具体的推导过程如下。序号1-9对应下图的公式1-9。

  1. 假设发射的正弦信号s(t)振幅是a,调制频率是f
  2. 经过时延 △t后接收到的信号为接收r(t),衰减后的振幅为A,强度偏移(由环境光引起)为B
  3. 四个采样时间间隔相等,均为T/4
  4. 根据上述采样时间可以列出四个方程组
  5. 从而可以计算出发射和接收的正弦信号的相位偏移△φ
  6. 据此可以根据(6)中公式计算物体和深度相机的距离d
  7. 接收信号的衰减后的振幅A的计算结果
  8. 接收信号强度偏移B的计算结果,反映了环境光
  9. A, B的值间接的反应了深度的测量精度,深度测量方差可以用公式9近似表示。

连续正弦波调制公式推导

优点:

  1. 相位偏移(公式5)中的(r2-r0)和(r1-r3)相对于脉冲调试法消除了由于测量器件或者环境光引起的固定偏差。
  2. 可以根据接收信号的振幅A和强度偏移B来间接的估算深度测量结果的精确程度(方差)。
  3. 不要求光源必须是短时高强度脉冲,可以采用不同类型的光源,运用不同的调制方法

缺点:

  1. 需要多次采样积分,测量时间较长,限制了相机的帧率
  2. 需要多次采样积分,测量运动物体时可能会产生运动模糊。

总结

目前的消费级TOF深度相机主要有:微软的Kinect 2、 MESA 的 SR4000 、Google Project Tango 中使用的PMD Tech 的TOF深度相机等。这些产品已经在体感识别、手势识别、环境建模等方面取得了较多的应用,最典型的就是微软的Kinect 2。

TOF深度相机对时间测量的精度要求较高,即使采用最高精度的电子元器件,也很难达到毫米级的精度。因此,在近距离测量领域,尤其是1m范围内,TOF深度相机的精度与其他深度相机相比还具有较大的差距,这限制它在近距离高精度领域的应用。

但是,从前面的原理不难看出,TOF深度相机可以通过调节发射脉冲的频率改变相机测量距离;TOF深度相机与基于特征匹配原理的深度相机不同,其测量精度不会随着测量距离的增大而降低,其测量误差在整个测量范围内基本上是固定的;TOF深度相机抗干扰能力也较强。因此,在测量距离要求比较远的场合(如无人驾驶),TOF深度相机具有非常明显的优势。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-11-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 小白学视觉 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
TOF飞行时间深度相机介绍
飞行时间原理是基于测量波从震源(飞行时间传感器)到目标和返回所需的时间,基于这些数据以及一些数学和物理知识(如波传播)可以确定该物体与震源的距离,根据技术的不同,可以使用不同类型的波来获得不同的结果,飞行时间是捕捉3D图像的几种方法之一,例如立体相机(具有两个单独的镜头以模拟人类视觉并重建深度感知的相机)或结构光成像(将结构图像投影到对象上,并根据网格的变形计算该对象的形状和距离)。
点云PCL博主
2022/09/13
1.2K0
TOF飞行时间深度相机介绍
浅谈DToF技术原理
苹果公司在3月18日发布新款ipad pro等产品,基于新搭载的DToF激光雷达,有望将AR应用效果的精确度、流畅性提高到新的级别,同时可以降低设备功耗。国内的3D摄像头公司对TOF技术很熟悉,大家使用的都是基于IToF的方案;DToF技术多数厂商还都很陌生,国内的相关产业链也还不成熟,网上关于DToF的资料也相对较少,为了更好的理解DToF技术,根据从去年下半年开始对DToF的追踪,我们整理了这篇文章,目的是方便大家加深对这个技术的理解。
点云PCL博主
2020/10/26
4.1K1
浅谈DToF技术原理
tof测距精度可以达到多少_毫米波雷达成像
虽然这些词汇一起出现的频率很高,但事实上之前在用的时候经常并不能确定某个方案所使用的技术细节究竟是什么样的,例如,扫地机器人究竟用了那个雷达,而这个雷达又用了什么技术。
全栈程序员站长
2022/09/29
1.6K0
tof测距精度可以达到多少_毫米波雷达成像
52. 光的飞行时间技术 (TOF系列2)
诚如你在飞秒摄影介绍中所看到的,TOF技术是将时间维度的信息转换为空间维度信息的方法,其本质原理是我们在小学时就学过这样的公式: 距离 = 速度 * 时间
HawkWang
2021/03/16
7340
52. 光的飞行时间技术 (TOF系列2)
深度相机(TOF)的工作原理
TOF(Time of flight)直译为“飞行时间”。其测距原理是通过给目标连续发送光脉冲,然后用传感器接收从物体返回的光,通过探测光脉冲的飞行(往返)时间来得到目标物距离。这种技术跟3D激光传感器原理基本类似,只不过3D激光传感器是逐点扫描,而TOF相机则是同时得到整幅图像的深度(距离)信息。
全栈程序员站长
2022/09/01
2.5K0
深度相机(TOF)的工作原理
智能手机双摄像头原理解析:RGB +Depth
用户1150922
2018/01/08
5.3K0
智能手机双摄像头原理解析:RGB +Depth
ToF相机学习笔记之基本知识
ToF相机属于一种非接触式光学传感器,通过计算发射激光的飞行时间获取对应像素的深度信息。就非接触式距离测量方法而言,其分类可用下表表示如下:
全栈程序员站长
2022/08/31
4220
ToF相机学习笔记之基本知识
3D成像方法 汇总(原理解析)— 双目视觉、激光三角、结构光、ToF、光场、全息
这里要介绍的是真正的3D成像,得到物体三维的图形,是立体的图像。而不是利用人眼视觉差异的特点,错误感知到的假三维信息。
3D视觉工坊
2021/05/18
4.6K0
3D成像方法 汇总(原理解析)— 双目视觉、激光三角、结构光、ToF、光场、全息
UWB常用的算法——飞行时间 (ToF)
基于恒定的光速,飞行时间 (ToF) 计算使用信号传播时间来确定距离。图 1 基本说明了 ToF 计算如何在配备 UWB 的任何两个设备(例如汽车和遥控钥匙)之间进行。
李肖遥
2022/09/10
1.9K0
UWB常用的算法——飞行时间 (ToF)
深度相机+激光雷达实现SLAM建图与导航
随着机器视觉,自动驾驶等颠覆性的技术逐步发展,采用3D相机进行物体识别,行为识别,场景建模的相关应用越来越多,可以说深度相机就是终端和机器人的眼睛,那么什么是深度相机呢,跟之前的普通相机(2D)想比较,又有哪些差别?深度相机又称之为3D相机,顾名思义,就是通过该相机能检测出拍摄空间的景深距离,这也是与普通摄像头最大的区别。
一点人工一点智能
2023/03/05
3.7K0
深度相机+激光雷达实现SLAM建图与导航
三种主流深度相机介绍
深度相机又称之为3D相机,顾名思义,就是通过该相机能检测出拍摄空间的景深距离,这也是与普通摄像头最大的区别。
点云PCL博主
2019/07/30
5.8K0
三种主流深度相机介绍
3D深度传感ToF技术的基本原理解析
飞行时间(ToF)相机凭借更小的外形尺寸、更宽的动态感测范围,以及在多种环境下工作的能力,成为首选的深度传感方法。虽然ToF技术已在科学和军事领域应用多年,但随着21世纪初图像传感技术的进步,才得到更加普遍的应用。性能的变革意味着,包括 ADI ToF 技术在内的探测技术,已被应用到智能手机、消费电子和游戏设备中,未来将不仅限于消费市场。随着技术的进一步成熟,将有机会利用主流制造工艺从设计、制造和货物运输等多方面来提高系统效率。
小白学视觉
2022/02/12
1.6K0
3D深度传感ToF技术的基本原理解析
3D视觉传感技术:时间飞行法 (ToF) 技术分析
3D视觉传感技术是一项重要的科学突破。它是一种深度传感技术,增强了摄像机进行面部和目标识别的能力。相对于2D技术,3D技术除了显示对象的X和Y值之外,还可以提供记录场景或对象的深度值,在感知和处理日常活动的方式上带来了独特的进步,制造商争先恐后地将这些新的进步融入到手机等消费产品中。该技术利用光学技术模拟人类视觉系统,促进了增强现实、人工智能和物联网的出现和应用。
3D视觉工坊
2021/07/27
4.3K1
深度解析机器视觉四大光学成像方法
工业4.0时代,三维机器视觉备受关注,目前,三维机器视觉成像方法主要分为光学成像法和非光学成像法,这之中,光学成像法是市场主流。
一点人工一点智能
2023/03/17
1.1K0
深度解析机器视觉四大光学成像方法
三角法激光雷达测距原理「建议收藏」
买了一个rplidar A2, 做工不错,挺漂亮的,更重要的是可以软件启动停止,噪声很小,而且反射检测灵敏度比较高(可以扫描到毛玻璃, 有些差的激光雷达检测不到毛玻璃上的反射)。
全栈程序员站长
2022/09/05
3.4K0
三角法激光雷达测距原理「建议收藏」
苹果供应链消息:明年的iPhone会装有ToF相机
手机厂商一向热衷于在相机上做出创新尝试,苹果也不例外。就在最近,根据供应链的消息,苹果正要求供应商为明年的iPhone手机准备ToF相机镜头组件。
镁客网
2019/07/19
4070
苹果供应链消息:明年的iPhone会装有ToF相机
4D LiDAR 与 4D RADARS
LiDAR 是检测距离最精确的传感器,摄像头对于场景理解是必不可少的,RADAR 可以透过物体看到并允许直接测量速度。
点云PCL博主
2025/02/26
621
4D LiDAR 与 4D RADARS
【深度相机系列四】深度相机原理揭秘--结构光(iPhone X 齐刘海原理)
用户1150922
2018/01/08
3.4K0
【深度相机系列四】深度相机原理揭秘--结构光(iPhone X 齐刘海原理)
干货 | LIDAR、ToF相机、双目相机如何科学选择?「建议收藏」
三维成像技术原理和应用想必大家在之前的文章中了解过啦,今天想给大家比较一下LIDAR、ToF 相机以及双目相机,并且还有一些直观的测试数据来展示各自的优缺点,是骡子是马拉出来溜溜!
全栈程序员站长
2022/09/01
1.3K0
干货 | LIDAR、ToF相机、双目相机如何科学选择?「建议收藏」
54. 多径干扰-3D相机面临的另一个挑战 (TOF系列4)
在上一篇文章:53. 3D相机面临的困难问题和解决方案 (TOF系列3)中,我们看到了影响3D相机在实际环境中使用的第一个因素:环境光照
HawkWang
2021/04/07
1.3K0
54. 多径干扰-3D相机面临的另一个挑战 (TOF系列4)
推荐阅读
相关推荐
TOF飞行时间深度相机介绍
更多 >
领券
社区富文本编辑器全新改版!诚邀体验~
全新交互,全新视觉,新增快捷键、悬浮工具栏、高亮块等功能并同时优化现有功能,全面提升创作效率和体验
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
查看详情【社区公告】 技术创作特训营有奖征文