前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Contrastive Loss(对比损失)Contrastive Loss

Contrastive Loss(对比损失)Contrastive Loss

作者头像
致Great
发布2018-06-13 14:35:26
4K0
发布2018-06-13 14:35:26
举报
文章被收录于专栏:程序生活

Contrastive Loss

在传统的siamese network中一般使用Contrastive Loss作为损失函数,这种损失函数可以有效的处理孪生神经网络中的paired data的关系。

siamese network-孪生神经网络

contrastive loss的表达式如下:

代码语言:javascript
复制
# tensorflow伪代码
def contrastive_loss(self, y,d,batch_size):
      tmp= y *tf.square(d)
      #tmp= tf.mul(y,tf.square(d))
      tmp2 = (1-y) *tf.square(tf.maximum((1 - d),0))
      return tf.reduce_sum(tmp +tmp2)/batch_size/2    

其中d=||an-bn||2,代表两个样本的欧式距离,y为两个样本是否匹配的标签,y=1代表两个样本相似或者匹配,y=0则代表不匹配,margin为设定的阈值。 这种损失函数最初来源于Yann LeCun的Dimensionality Reduction by Learning an Invariant Mapping,主要是用在降维中,即本来相似的样本,在经过降维(特征提取)后,在特征空间中,两个样本仍旧相似;而原本不相似的样本,在经过降维后,在特征空间中,两个样本仍旧不相似。 观察上述的contrastive loss的表达式可以发现,这种损失函数可以很好的表达成对样本的匹配程度,也能够很好用于训练提取特征的模型。当y=1(即样本相似)时,损失函数只剩下

即原本相似的样本,如果在特征空间的欧式距离较大,则说明当前的模型不好,因此加大损失。

而当y=0时(即样本不相似)时,损失函数为

即当样本不相似时,其特征空间的欧式距离反而小的话,损失值会变大,这也正好符号我们的要求。

这张图表示的就是损失函数值与样本特征的欧式距离之间的关系,其中红色虚线表示的是相似样本的损失值,蓝色实线表示的不相似样本的损失值。

个人见解:欧式距离表示两个文本向量在空间之间的距离,如果距离很小说明样本相似;反过来,两个文本越相似,那么它们之间的欧式距离越小;从上面图中我们可以看出,x轴为d(欧式距离),以红色虚线为例,它们描述了两个相似文本loss与欧式距离之间的关系,因为欧式距离越大与"两个文本相似"这个事实事与愿违,那么我们就对它们惩罚越大(即loss越大)。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018.06.08 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Contrastive Loss
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档