Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >小白学CNN以及Keras的速成

小白学CNN以及Keras的速成

作者头像
AI研习社
发布于 2018-03-19 06:53:24
发布于 2018-03-19 06:53:24
7580
举报
文章被收录于专栏:AI研习社AI研习社

为何要用Keras

如今在深度学习大火的时候,第三方工具也层出不穷,比较出名的有Tensorflow,Caffe,Theano,MXNet,在如此多的第三方框架中频繁的更换无疑是很低效的,只要你能够好好掌握其中一个框架,熟悉其原理,那么之后因为各种要求你想要更换框架也是很容易的。

那么sherlock用的是哪个框架呢?sherlock使用的是Google的开源框架Tensorflow,因为Google开源了tensorflow之后其社区非常活跃,而且版本更新也非常稳定,所以我就选择了这个框架。对于框架之争,在知乎上已经有很多人在撕逼了,这个就好比哪种编程语言好这个问题一样。对于我们来讲,选择一个稳定的框架,好好的学习deep learning才是重中之重,对于哪种框架更好的问题,我们学好之后自然有自己的见解,所以前期切忌在刷知乎听完大神撕逼之后频繁更换框架。

对于Tensorflow的安装,以及CPU和GPU版本,各种系统的安装网上已经有很多人详细的写过攻略了,可以自己去网上搜一搜,很容易就可以安装成功。

选择了Tensorflow之后,我们就可以愉快的开始我们的深度学习之旅了。去Tensorflow的中文社区,可以看到有一些新手教程,网上也有很多学习材料,推荐看看stanford大学cs224d的课件,http://cs224d.stanford.edu/lectures/CS224d-Lecture7.pdf, 很详细的介绍了tensorflow。

然后你就可以写tensorflow的程序了。虽然说tensorflow已经是一个封装好的框架,但是你发现你写一个简单的神经网络也需要很多行才能够写完,这个时候,就有很多的第三方插架来帮助你写网络,也就是说你用tensorflow要写10行,第三方插架帮你封装了一个函数,就是把这10行集合在这个函数里面,那么你用1行,传入相同的参数,就能够达到10行相同的效果,如此简便并且节约时间,可以帮助很快的实现我们的想法。

Keras Documentation 就是Keras的官方文档,里面可以查阅所有的函数,并且可以在github上看他的开源代码,非常方便。安装也很简单,打开终端,输入pip install keras 就可以等待安装了。

下面就给一个简单的例子,来看一看Keras到底有多简单。

from keras.models import Sequential model = Sequential()

引入sequential,这个就是一个空的网络结构,并且这个结构是一个顺序的序列,所以叫Sequential,Keras里面还有一些其他的网络结构。

from keras.layers import Dense, Activation model.add(Dense(units=64, input_dim=100)) model.add(Activation('relu')) model.add(Dense(units=10)) model.add(Activation('softmax'))

可以看到加入层很简单,只需要写.add,后面是要加的层的类型。

model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])

一旦你写好了网络之后,就可以用compile编译整个网络,看参数设置有没有问题

model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True))

你也可以自定义其中的优化函数,就像上面这样,’sgd’是Keras已经写好了一些默认参数的优化函数,你可以自己重新定义参数,得到一个优化函数。

model.fit(x_train,y_train,epochs=5,batch_size=32)

这个就像scikit-learn一样训练模型。

loss_and_metrics=model.evaluate(x_test,y_test,batch_size=128)

这个就是评估训练结果。

classes=model.predict(x_test,batch_size=128)

或者是通过predict进行预测。

看了上面的代码,相信很多熟悉scikit-learn的同学都很亲切,因为确实很简便,跟scikit-learn也有着类似的语法。

开始学习CNN

在理解CNN之前,我们有必要先理解一下什么是神经网络,这样才能开始了解更高级的卷积神经网络

要学习神经网络当然有很多途径,网上不少的大牛写了很多攻略,有的推崇从理论到工程完成深度学习,有的希望从工程出发发现问题,解决问题。各种各样的方式都有不同的人去尝试,攻略也是一大推,这使得不少的小白直接倒在了选择材料的路上,一直在补先修知识,待到热情结束就放弃了学习,连卷积网络都不知道是什么,大大地打击了大家的学习热情。今天,sherlock在这里给大家推荐一个学习材料,保证你能够快速入门cnn,出去装逼也能够和别人聊几句。

这个材料是什么呢,就是大名鼎鼎的standford的cs231n这门课程。 CS231n Convolutional Neural Networks for Visual Recognition stanford大学确实算是深度学习和人工智能领域非常牛逼的学校。

神经网络

废话不多说,开始学习我们的神经网络。

这是一张脑神经的图片,神经网络的发明也是由此开始的,这就是所谓的一个神经元,上面有各种接受突触,然后通过一个脑神经来接受,最后得到输出的结果。

那么由这张脑神经图能够抽象出来的神经网络是什么呢?就是下面这个神经网络模型。

这个怎么理解呢?就是输入一个向量,然后给向量的每一个元素分配一个权重,然后通过权重求和得到一个结果,然后将这个结果输入一个激活函数,得到最后的输出结果。

激活函数又是什么鬼?激活函数的出现是因为人脑的构造,人脑里面接受信息得到结果这个过程是非线性的,比如你看到一样东西,你不可能保留这个东西的全部特征,你会重点观察你感兴趣的地方,这就是非线性的,也就是说需要一个非线性变化将输入的结果变换为非线性的结果。现在常用的非线性函数就是Relu(x) = max(x, 0),就是将小于0的部分去掉,只保留大于0的部分。

这就是单元的输入和输出,将这些单元合在一起就是一个神经网络。

这就是简单的一层网络,也可以由多层网络

这里面的input layer就是所谓的单个训练集的维数,将所有的训练集输入就可以开始训练一个神经网络。

Keras实现简单的神经网络

知道了神经网络的基本结构和原理,我们就可以开始使用keras去实现一个简单的神经网络。

import keras from keras.models import Sequential from keras.layers import Dense import numpy as np

导入必要的package

x=np.array([[0,1,0],[0,0,1],[1,3,2],[3,2,1]]) y=np.array([0,0,1,1]).T

设定输入的x和y

simple_model=Sequential() simple_model.add(Dense(5,input_shape=(x.shape[1],),activation='relu',name='layer1')) simple_model.add(Dense(4,activation='relu',name='layer2')) simple_model.add(Dense(1,activation='sigmoid',name='layer3'))

输入一个三层的神经网络,中间的hidden layer的元素个数是5和4,最后一层输出一个结果

simple_model.compile(optimizer='sgd',loss='mean_squared_error')

complie这个简单的模型

simple_model.fit(x,y,epochs=20000)

训练20000次模型

simple_model.predict(x[0:1])

可以预测一下第一个输入的x的结果与实际的是否相符。

上面就是一个简单三层网络的keras实现,接下来我们将正式进入Convolutional Neural Network

Convolutional Neural Network

前面给大家推荐了一门好课cs231n,本篇文章也是按照这个思路来的。

基本结构

首先解释一下什么是卷积,这个卷积当然不是数学上的卷积,这里的卷积其实表示的是一个三维的权重,这么解释起来可能不太理解,我们先看看卷积网络的基本结构。

通过上面的图我们清楚地了解到卷积网络和一般网络结构上面的差别,也可以理解为卷积网络是立体的,而一般的网络结构是平面的。

卷积层

了解完了基本的结构之后,我们就要了解cnn最重要的一个部分,也是最为创新的一个部分,卷积层。首先用一张图片来比较一下卷积网络到底创新在什么地方。

我们通过这个结构就可以清晰地看到卷积网络到底是怎么实现的。首先右边是传统的网络结构,在前面我们已经详细的解释过了。而左边的图片,我们首先看看图中最左边的结构,你肯定会好奇为什么是32x32x3的一块立体方块。这个32x32代表的是像素点,说白了也就是图片的大小,这个大小是你可以设置的,你可以设置为50x50,也可以是256x256,这都取决与图片的大小,那么3表示什么呢?3其实表示的是RGB的三个通道,RGB也是什么?RGB表示red,green,blue,这三种颜色的各种组合叠加可以形成各种各样的颜色,所以任何一张照片都可以用左边这种图形来表示。

那么中间这个小方块又表示什么呢?这个就是我们要重点讲的卷积。所谓的卷积,就是这种小方块,我们设置一个小方块的大小,但是这个小方块的厚度必须和左边的这个大方块的厚度是一样的,大方块每一个像素点由一个0到255的数字表示,这样我们就可以赋予小方块权重,比如我们取小方块的大小是3x3,我们要求厚度必须要和左边的大方块厚度一样,那么小方块的的大小就为3x3x3,我们就可以赋予其3x3x3个权重,然后我们就可以开始计算卷积的结果,将小方块从大方块的左上角开始,一个卷积小方块所覆盖的范围是3x3x3,然后我们将大方块中3x3x3的数字和小方块中的权重分别相乘相加,再加上一个偏差,就可以得到一个卷积的结果,可以抽象的写成Wx+b这种形式,这就是图上所显示的结果,然后我们可以设置小方块的滑动距离,每次滑动就可以形成一个卷积的计算结果,然后将整张大图片滑动覆盖之后就可以形成一层卷积的结果,我们看到图中的卷积结果是很厚的,也就是设置了很多层卷积。总结来说,每层卷积就是一个卷积核在图片上滑动求值,然后设置多个卷积核就可以形成多层的卷积层。

池化层

讲完卷积层,接下来就要讲一下池化层。为什么会有池化层的出现呢?是因为不断的做卷积,得到的中间结果会越来越厚,卷积就相当于提取图片中的特征,所以卷积层一般会设置得越来越厚,不然你就无法从前面的结果来提取更多的特征。这样就会导致中间的结果会越来越大,计算会越来越慢,所以提出了池化层。

所谓的池化层,就是将图片的大小缩小的一种处理方式。我们可以先看看下面的图片。

通过这个图片,我们可以清楚地看到池化层是怎么处理的。池化层也是需要先设置一个窗口,但是这个小窗口的厚度是1,而不再是前一层输出的结果的厚度。然后有两种处理方式,一种是取这个小窗口里面所有元素的最大值来代表这个小窗口,一种是取平均值,然后将小窗口滑动,在第二的位置再做同样的处理,上层网络输出方块的每一层做完之后就进入这个大方块的下一层做同样的操作,这个处理办法就可以让整个大方块的大小变小,可以看看上面的图片的左边。右边是一个简单的一层厚度,取最大值的例子。

实现Lenet

讲完了卷积网络的基本结构之后,你是不是已经迫不及待希望能够实现一个简单的神经网络了呢?卷积网络发展的特别迅速,最早是由Lecun提出来的,Lenet成为cnn的鼻祖,接下来他的学生Alex提出了层数更深的Alexnet,然后2013年又提出了VGGnet,有16层和19层两种,这些都只是在层数上面的加深,并没有什么其他的创新,而之后google提出了inception net在网络结构上实现了创新,提出了一种inception的机构,facebook ai 实验室又提出了resnet,残差网络,实现了150层的网络结构可训练化,这些我们之后会慢慢讲到。

接下来我们就来实现一下最简单的Lenet,使用mnist手写子体作为训练集。

import keras from keras.datasets import mnist (x_train, y_train), (x_test,y_test) =mnist.load_data()

导入必要的库和数据集

x_train=x_train.reshape(-1,28,28,1) x_test=x_test.reshape(-1,28,28,1) x_train=x_train/255. x_test=x_test/255. y_train=keras.utils.to_categorical(y_train) y_test=keras.utils.to_categorical(y_test)

处理数据,让数据的shape是(28, 28, 1),然后label做一个one-hot encoding处理,比如类别是3,那么变成[0, 0, 1 ,0, 0, 0, 0, 0, 0, 0]。

from keras.layers import Conv2D,MaxPool2D,Dense,Flatten from keras.models import Sequential lenet=Sequential() lenet.add(Conv2D(6,kernel_size=3,strides=1,padding='same',input_shape=(28, 28, 1))) lenet.add(MaxPool2D(pool_size=2,strides=2)) lenet.add(Conv2D(16,kernel_size=5,strides=1,padding='valid')) lenet.add(MaxPool2D(pool_size=2,strides=2)) lenet.add(Flatten()) lenet.add(Dense(120)) lenet.add(Dense(84)) lenet.add(Dense(10,activation='softmax'))

构建lenet

lenet.compile('sgd',loss='categorical_crossentropy',metrics=['accuracy'])

编译

lenet.fit(x_train,y_train,batch_size=64,epochs=50,validation_data=[x_test,y_test])

训练50次,得到结果如下

lenet.save('myletnet.h5')

可以保存训练好的模型

总结

OK, 这就是我们写的一个超级简单的Lenet,训练50次得到的训练准确率已经达到0.9939,测试准确率达到0.9852。

*这篇文章的代码都已传到了github: SherlockLiao/lenet

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-08-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 AI研习社 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Python人工智能 | 十八.Keras搭建卷积神经网络及CNN原理详解
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章详细讲解了Keras实现分类学习,以MNIST数字图片为例进行讲解。本篇文章详细讲解了卷积神经网络CNN原理,并通过Keras编写CNN实现了MNIST分类学习案例。基础性文章,希望对您有所帮助!
Eastmount
2022/11/25
1.6K0
LeNet-5算法入门
LeNet-5是一个经典的卷积神经网络(CNN)算法,由Yann LeCun等人于1998年提出。它是第一个成功应用于手写数字识别的卷积神经网络,将深度学习引入到了计算机视觉领域。LeNet-5算法由七个网络层组成,其中包含了卷积层、池化层和全连接层,以及非线性激活函数等。
大盘鸡拌面
2023/10/26
3610
Keras介绍
Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:
用户7886150
2021/02/14
1.2K0
一文弄懂CNN及图像识别(Python)
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算的前馈神经网络,是基于图像任务的平移不变性(图像识别的对象在不同位置有相同的含义)设计的,擅长应用于图像处理等任务。在图像处理中,图像数据具有非常高的维数(高维的RGB矩阵表示),因此训练一个标准的前馈网络来识别图像将需要成千上万的输入神经元,除了显而易见的高计算量,还可能导致许多与神经网络中的维数灾难相关的问题。
算法进阶
2022/06/02
1.5K0
一文弄懂CNN及图像识别(Python)
带你一文搞懂CNN以及图像识别(Python)
卷积神经网络(Convolution Neural Networks,CNN)是一类包含卷积计算的前馈神经网络,是基于图像任务的平移不变性(图像识别的对象在不同位置有相同的含义)设计的,擅长应用于图像处理等任务。在图像处理中,图像数据具有非常高的维数(高维的RGB矩阵表示),因此训练一个标准的前馈网络来识别图像将需要成千上万的输入神经元,除了显而易见的高计算量,还可能导致许多与神经网络中的维数灾难相关的问题。
JOYCE_Leo16
2024/03/19
1.2K0
带你一文搞懂CNN以及图像识别(Python)
【Keras篇】---Keras初始,两种模型构造方法,利用keras实现手写数字体识别
Keras 适合快速体验 ,keras的设计是把大量内部运算都隐藏了,用户始终可以用theano或tensorflow的语句来写扩展功能并和keras结合使用。
LhWorld哥陪你聊算法
2018/09/13
1.1K0
【Keras篇】---Keras初始,两种模型构造方法,利用keras实现手写数字体识别
机器学习-用keras做cnn手写数字识别
在用全连接做手写数字识别的时候,准确率有97%了,但是还是会出现一些测试图片没有预测对,出来更好的去优化参数,现在就直接改进神经网络的模型,用cnn去训练数据。
sjw1998
2019/09/28
9960
【推荐系统】基于文本挖掘的推荐模型【含基于CNN的文本挖掘、python代码】
二维卷积网络是通过将卷积核在二维矩阵中,分别从width和height两个方向进行滑动窗口操作,且对应位置进行相乘求和。而图像则正是拥有二维特征像素图,所以图像应用卷积网络是二维卷积网络。
司六米希
2022/11/15
1.4K0
【推荐系统】基于文本挖掘的推荐模型【含基于CNN的文本挖掘、python代码】
入门项目数字手写体识别:使用Keras完成CNN模型搭建
对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一。在面部识别、自动驾驶、物体检测等领域,CNN被广泛使用,并都取得了最优性能。对于绝大多数深度学习新手而言,数字手写体识别任务可能是第一个上手的项目,网络上也充斥着各种各样的成熟工具箱的相关代码,新手在利用相关工具箱跑一遍程序后就能立刻得到很好的结果,这时候获得的感受只有一个——深度学习真神奇,却没能真正了解整个算法的具体流程。本文将利用Keras和TensorFlow设计一个简单的二维卷积神经网络(CNN)模型,手把手教你用代码完成MNIST数字识别任务,便于理解深度学习的整个流程。
用户3578099
2019/08/16
8910
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
深度学习是机器学习的一个子领域,专注于使用多层神经网络(深度神经网络)来解决复杂任务。深度学习模型通常包含多个隐藏层,这使得模型能够学习到更复杂和抽象的特征表示。
逆向-落叶
2024/11/26
6810
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
深度学习|Keras识别MNIST手写数字(CNN)
今天继续使用MNIST数据。 方法: 这次使用的方法为卷积神经网络(CNN)。卷积神经网络通过卷积层,池化层来做特征的提取,最后再连上全连接网络。
罗罗攀
2019/02/22
1.4K0
深度学习|Keras识别MNIST手写数字(CNN)
Keras基本用法
Keras是目前使用最为广泛的深度学习工具之一,它的底层可以支持TensorFlow、MXNet、CNTK和Theano。如今,Keras更是被直接引入了TensorFlow的核心代码库,成为TensorFlow官网提供的高层封装之一。下面首先介绍最基本的Keras API,斌哥给出一个简单的样例,然后介绍如何使用Keras定义更加复杂的模型以及如何将Keras和原生态TensorFlow结合起来。
狼啸风云
2019/12/19
1.5K0
【小白学习Keras教程】四、Keras基于数字数据集建立基础的CNN模型
-CNN的基本结构:CNN与MLP相似,因为它们只向前传送信号(前馈网络),但有CNN特有的不同类型的层
润森
2022/08/18
5870
【小白学习Keras教程】四、Keras基于数字数据集建立基础的CNN模型
利用Tensorflow2.0实现卷积神经网络CNN
前面几节课我们给大家介绍的都是全连接神经网络,但全连接神经网络有个明显的缺点,那就是当网络层数较多时(尤其是在图像识别任务中),它每层的参数数量容易变得很大,不好控制。所以本节课老shi准备给大家介绍另外一种非常重要的网络结构——卷积神经网络。卷积神经网络(Convolutional Neural Network, CNN)近几年在深度学习中的应用非常广泛,特别是在图像识别、语音识别以及本文处理方面。可以说,卷积神经网络是深度学习中最重要的神经网络之一,例如图像识别中非常有名的LeNet、AlexNet、 ResNet、VGGNet、InceptionNet等网络结构都是在卷积神经网络基础上得来的。
用户7569543
2020/07/20
2K0
你画我猜
Quick Draw 数据集是一个包含5000万张图画的集合,分成了345个类别,这些图画都来自于Quick, Draw! 游戏的玩家。
故事尾音
2019/12/18
9480
你画我猜
Lenet神经网络解读及其代码实现
  手写字体识别模型LeNet5诞生于1994年,是最早的卷积神经网络之一。LeNet5通过巧妙的设计,利用卷积、参数共享、池化等操作提取特征,避免了大量的计算成本,最后再使用全连接神经网络进行分类识别,这个网络也是最近大量神经网络架构的起点。虽然现在看来Lenet基本实际用处不大,而且架构现在基本也没人用了,但是可以作为神经网络架构的一个很好的入门基础。
墨明棋妙27
2022/08/24
3790
Lenet神经网络解读及其代码实现
【连载17】GoogLeNet Inception V2
GoogLeNet Inception V2在《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》出现,最大亮点是提出了Batch Normalization方法,它起到以下作用:
lujohn3li
2020/03/09
4370
【连载17】GoogLeNet Inception V2
用keras搭建一个简单的一维卷积神经网络
我所采用的数据集,是我自己构建的一个网络流量数据集,借鉴了Wei Wang等人端到端的思想,
全栈程序员站长
2022/11/08
7540
基于MNIST手写体数字识别--含可直接使用代码【Python+Tensorflow+CNN+Keras】
利用数据集:MNIST http://yann.lecun.com/exdb/mnist/ 完成手写体数字识别 紫色yyds
司六米希
2022/11/15
5.5K0
基于MNIST手写体数字识别--含可直接使用代码【Python+Tensorflow+CNN+Keras】
毕业设计之「测试实验及结果分析」(一)
在毕设系列推文的第二章中我们详细介绍了TensorFlow的一些基础知识(TensorFlow 2.0 概述);在第三章(毕业设计之「神经网络与深度学习概述」 (一)、毕业设计之「神经网络与深度学习概述」(二))中对神经网络与深度学习做了简单的概述(主要介绍本章节中完成两个项目所用的一些基础概念)包括激活函数、梯度下降、损失函数、softmax算法等;并且通过简单描述全连接神经网络的不足,详细介绍了卷积神经网络的相关概念。
石璞东
2020/07/29
8640
毕业设计之「测试实验及结果分析」(一)
推荐阅读
相关推荐
Python人工智能 | 十八.Keras搭建卷积神经网络及CNN原理详解
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档