前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >NumPy 基础

NumPy 基础

原创
作者头像
bowenerchen
修改2025-03-31 19:06:06
修改2025-03-31 19:06:06
10100
代码可运行
举报
文章被收录于专栏:数理视界数理视界
运行总次数:0
代码可运行

NumPy 中常见的基础操作

NumPy常见基础操作
NumPy常见基础操作
numpy 思维导图
numpy 思维导图

代码示例

代码语言:python
代码运行次数:0
运行
复制
import numpy as np

# A NumPy array can be specified to be stored in row-major format, using the keyword
# argument order= 'C', and column-major format, using the keyword argument
# order= 'F', when the array is created or reshaped. The default format is row-major.
data = np.array([[0, 1], [1, 2], [2, 3], [3, 4]])
print('数组的维度数:', data.ndim)
print('数组中元素的总个数:', data.size)
print('数组中元素的数据类型:', data.dtype)
print('整个数组在内存中所占的字节数:', data.nbytes)
print('数组中每个元素在内存中所占的字节数:', data.itemsize)
print('获取数组的形状(各维度上元素的个数情况):', data.shape)
print('转换为 Python 内置的列表类型:', data.tolist())
# print('Numpy支持的所有数据类型:', np.sctypeDict)

data_0 = data[0]
print('数组的维度数data_0:', data_0.ndim)
print('数组中元素的总个数data_0:', data_0.size)
print('数组中元素的数据类型data_0:', data_0.dtype)
print('整个数组在内存中所占的字节数data_0:', data_0.nbytes)
print('数组中每个元素在内存中所占的字节数data_0:', data_0.itemsize)
print('获取数组的形状(各维度上元素的个数情况)data_0:', data_0.shape)
print('转换为 Python 内置的列表类型data_0:', data_0.tolist())

data_0_0 = data[0][0]
print('数组的维度数data_0_0:', data_0_0.ndim)
print('数组中元素的总个数data_0_0:', data_0_0.size)
print('数组中元素的数据类型data_0_0:', data_0_0.dtype)
print('整个数组在内存中所占的字节数data_0_0:', data_0_0.nbytes)
print('数组中每个元素在内存中所占的字节数data_0_0:', data_0_0.itemsize)
print('获取数组的形状(各维度上元素的个数情况)data_0_0:', data_0_0.shape)
print('转换为 Python 内置的列表类型data_0_0:', data_0_0.tolist())

# Once a NumPy array is created, its dtype cannot be changed, other than by creating
# a new copy with type-casted array values.
data = np.array([[0, 1], [1, 2], [2, 3], [3, 4]])
print('数组中元素的数据类型 data:', data.dtype)
print('整个数组在内存中所占的字节数 data:', data.nbytes)
print('转换为 Python 内置的列表类型 data:', data.tolist())

data2 = np.array(data, dtype = np.float64)
print('数组中元素的数据类型 data2:', data2.dtype)
print('整个数组在内存中所占的字节数 data2:', data2.nbytes)
print('转换为 Python 内置的列表类型 data2:', data2.tolist())

data3 = np.array(data, dtype = np.complex64)
print('数组中元素的数据类型 data3:', data3.dtype)
print('整个数组在内存中所占的字节数 data3:', data3.nbytes)
print('转换为 Python 内置的列表类型 data3:', data3.tolist())

data4 = data.astype(np.float32)
print('数组中元素的数据类型 data4:', data4.dtype)
print('整个数组在内存中所占的字节数 data4:', data4.nbytes)
print('转换为 Python 内置的列表类型 data4:', data4.tolist())

data5 = np.sqrt(data)  # data 是 int,但是 data5 默认是 float64 类型
print('数组中元素的数据类型 data5:', data5.dtype)
print('整个数组在内存中所占的字节数 data5:', data5.nbytes)
print('对 data 开平方后得到的数据:', data5.tolist())

# Only when the data type of the array is complex is the square root of –1 resulting in the imaginary unit
# (denoted as 1j in Python).
data6 = np.sqrt([-1 + 1j, -2 - 2j, -3 * 3j], dtype = np.complex128)
print('数组中元素的数据类型 data6:', data6.dtype)
print('整个数组在内存中所占的字节数 data6:', data6.nbytes)
print('对 data6 开平方后得到的数据:', data6.tolist())

# RuntimeWarning: invalid value encountered in sqrt
# data7 = np.sqrt([-1])

# # ValueError: setting an array element with a sequence.
# # The requested array has an inhomogeneous shape after 1 dimensions.
# # The detected shape was (5,) + inhomogeneous part.
# ragged_array = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13], [14]])
# print('数组的维度数ragged_array:', ragged_array.ndim)
# print('数组中元素的总个数ragged_array:', ragged_array.size)
# print('数组中元素的数据类型ragged_array:', ragged_array.dtype)
# print('整个数组在内存中所占的字节数ragged_array:', ragged_array.nbytes)
# print('数组中每个元素在内存中所占的字节数ragged_array:', ragged_array.itemsize)
# print('获取数组的形状(各维度上元素的个数情况)ragged_array:', ragged_array.shape)
# print('转换为 Python 内置的列表类型ragged_array:', ragged_array.tolist())

#  have a ragged array created using NumPy with different-length sublists
# The dtype=object parameter is crucial here.
# When creating a ragged array (where subarrays have different lengths),
# NumPy needs to store it as an array of Python objects rather than a regular rectangular numeric array.
# Without dtype=object, NumPy would try to create a rectangular array and either:
# Pad shorter rows with zeros or NaN values
# Raise an error because the sublists have different lengths
ragged_array_2 = np.array([[0, 1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13], [14]], dtype = object)
print('数组的维度数ragged_array_2:', ragged_array_2.ndim)
print('数组中元素的总个数ragged_array_2:', ragged_array_2.size)
print('数组中元素的数据类型ragged_array_2:', ragged_array_2.dtype)
print('整个数组在内存中所占的字节数ragged_array_2:', ragged_array_2.nbytes)
print('数组中每个元素在内存中所占的字节数ragged_array_2:', ragged_array_2.itemsize)
print('获取数组的形状(各维度上元素的个数情况)ragged_array_2:', ragged_array_2.shape)
print('转换为 Python 内置的列表类型ragged_array_2:', ragged_array_2.tolist())

special_limit_value = {
    'np.inf': np.inf,
    'np.e': np.e,
    'np.pi': np.pi
}
print(special_limit_value)

zeros_data = np.zeros(shape = (3, 4), dtype = int)
print('zeros_data:', zeros_data.tolist())

ones_data = np.ones(shape = (3, 4), dtype = int)
print('ones_data:', ones_data.tolist())

multi_ones_data = 1.1 * np.ones(shape = (3, 4), dtype = float)
print('multi_ones_data:', multi_ones_data.tolist())

another_multi_ones_data = np.full(shape = (3, 4), fill_value = 10, dtype = int)
print('another_multi_ones_data:', another_multi_ones_data.tolist())

# To construct a matrix with an arbitrary one-dimensional array on the diagonal, we
# can use the np.diag function (which also takes the optional keyword argument k to
# specify an offset from the diagonal)
diag_data = np.diag([1, 2, 3])
print('diag_data:', diag_data.tolist())

range_data = np.arange(1, 20, 3)
print('range_data:', range_data.tolist())

lin_space_data = np.linspace(1, 20, 7)
print('lin_space_data:', lin_space_data.tolist())

# This creates 7 numbers between 10¹ and 10²⁰, where:
# The first parameter (1) is the start exponent
# The second parameter (20) is the end exponent
# The third parameter (7) is the number of points to generate
# By default, it uses base 10
# so the numbers are spaced evenly in powers of 10
log_space_data = np.logspace(1, 20, 7, base = 10)
print('log_space_data:', log_space_data.tolist())

# To create an array of specific size and data type, but without initializing the elements in
# the array to any particular values, we can use the function np.empty
# If all elements are guaranteed to be initialized later in the code, this can save a little bit of time,
# especially when working with large arrays.
uninitialized_data = np.empty(shape = (10, 10), dtype = np.int8)
print('uninitialized_data:', uninitialized_data.tolist())

# It is often necessary to create new arrays that share properties, such as shape and data
# type, with another array. NumPy provides a family of functions for this purpose: np.
# ones_like, np.zeros_like, np.full_like, and np.empty_like.
ones_like_data = np.ones_like(uninitialized_data)
print('ones_like_data:', ones_like_data.tolist())

zeros_like_data = np.zeros_like(uninitialized_data)
print('zeros_like_data:', zeros_like_data.tolist())

full_like_data = np.full_like(uninitialized_data, 1)
print('zeros_like_data:', full_like_data.tolist())

empty_like_data = np.empty_like(uninitialized_data)
print('empty_like_data:', empty_like_data.tolist())

# the function np.identity generates a square matrix with ones on the diagonal
# and zeros elsewhere
diagonal_data = np.identity(n = 5, dtype = int)
print('diagonal_data:', diagonal_data.tolist())


eye_data = np.eye(N = 5, k = 1)
print('eye_data:', eye_data.tolist())
eye_data = np.eye(N = 5, k = -1)
print('eye_data:', eye_data.tolist())

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • NumPy 中常见的基础操作
  • 代码示例
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档