前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
社区首页 >专栏 >【YOLOv8】YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck

【YOLOv8】YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck

作者头像
HABuo
发布2025-03-09 21:21:38
发布2025-03-09 21:21:38
19100
代码可运行
举报
运行总次数:0
代码可运行

💯一、FasterNet介绍

1. 简介

论文提出了一种新的神经网络架构 FasterNet,旨在通过提高浮点运算每秒(FLOPS)来实现更快的网络速度,同时不牺牲准确性。通过重新审视流行的卷积操作,发现深度可分离卷积(DWConv)等操作虽然减少了浮点运算(FLOPs),但频繁的内存访问导致了低效的FLOPS。为此,作者提出了一种新的部分卷积(PConv),通过减少冗余计算和内存访问,提高了计算效率。基于PConv,FasterNet在多种设备上实现了显著更高的运行速度,并在各种视觉任务上保持了高准确性。

2. PConv

2.1. DWConv的问题
  • 内存访问:DWConv虽然减少了FLOPs,但频繁的内存访问导致了低效的FLOPS。
  • 计算复杂度:为了补偿精度损失,DWConv通常需要增加网络宽度,这进一步增加了内存访问。
2.2. 部分卷积(PConv)
  • 设计:PConv通过仅在部分输入通道上应用卷积,同时保持其他通道不变,从而减少冗余计算和内存访问。
  • 优势:相比常规卷积,PConv的FLOPs更低,而相比DWConv/GConv,PConv的FLOPS更高,能更有效地利用设备的计算能力。
  • 实现:PConv通过利用特征图中的冗余信息,仅对部分通道进行卷积,然后通过逐点卷积(PWConv)聚合信息,形成T形的接受野,集中处理中心位置。


3. FasterNet架构

  • 结构:FasterNet基于PConv构建,包含四个层次化的阶段,每个阶段由嵌入层或合并层进行空间下采样和通道扩展,随后是多个FasterNet块。
  • 特点
    • 硬件友好:设计简洁,适用于多种设备(GPU、CPU、ARM处理器)。
    • 高效计算:通过PConv和PWConv的组合,实现了高效的特征提取和信息聚合。
    • 多种变体:提供了从Tiny到Large不同规模的FasterNet变体,以适应不同的计算预算。
  • 具体实现
    • 嵌入层:使用4×4卷积进行空间下采样。
    • 合并层:使用2×2卷积进行通道扩展。
    • FasterNet块:每个块包含一个PConv层,后接两个PWConv层,形成倒残差块结构。

4. FasterBlock

  • FasterBlock 是 FasterNet 的核心构建模块,它结合了部分卷积(PConv)和逐点卷积(PWConv)来实现高效的特征提取和信息聚合。以下是 FasterBlock 的详细设计和功能:
  • FasterBlock 的基本结构如下:
    • PConv 层:部分卷积层,仅在部分输入通道上应用卷积,同时保持其他通道不变。
    • 两个 PWConv 层:逐点卷积层,用于在通道维度上进行特征变换和信息聚合。
    • 残差连接:在块的末尾使用残差连接,以帮助梯度流动和提高训练稳定性。
  • PConv 层
    • 部分卷积:PConv 通过仅对部分输入通道进行卷积操作,减少了冗余计算和内存访问。具体来说,PConv 选择一部分通道(例如,1/4 的通道)进行卷积,而其他通道保持不变。
    • 计算效率:PConv 的计算复杂度显著降低,同时通过减少内存访问提高了 FLOPS。
  • PWConv 层
    • 逐点卷积:PWConv 是 1×1 卷积,用于在通道维度上进行特征变换和信息聚合。它可以帮助将 PConv 提取的特征信息更好地整合到所有通道中。
    • 两个 PWConv 层:第一个 PWConv 层用于扩展通道数,第二个 PWConv 层用于减少通道数,形成倒残差块结构。
  • 残差连接
    • 残差连接:在块的末尾使用残差连接,将输入特征图与输出特征图相加,以帮助梯度流动和提高训练稳定性。
  • 特征提取:PConv 层通过部分卷积提取空间特征,减少冗余计算和内存访问。
  • 信息聚合:第一个 PWConv 层扩展通道数,第二个 PWConv 层减少通道数,形成倒残差块结构,帮助更好地聚合信息。
  • 残差连接:残差连接帮助梯度流动,提高训练稳定性。

💯二、具体添加方法

第①步:定位到block.py

找到之后,将下面代码直接复制到末尾:

代码语言:javascript
代码运行次数:0
运行
复制
from timm.models.layers import DropPath
class Partial_conv3(nn.Module):
    def __init__(self, dim, n_div=4, forward='split_cat'):
        super().__init__()
        self.dim_conv3 = dim // n_div
        self.dim_untouched = dim - self.dim_conv3
        self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)

        if forward == 'slicing':
            self.forward = self.forward_slicing
        elif forward == 'split_cat':
            self.forward = self.forward_split_cat
        else:
            raise NotImplementedError

    def forward_slicing(self, x):
        # only for inference
        x = x.clone()   # !!! Keep the original input intact for the residual connection later
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])
        return x

    def forward_split_cat(self, x):
        # for training/inference
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)
        return x

class Faster_Block(nn.Module):
    def __init__(self,
                 inc,
                 dim,
                 n_div=4,
                 mlp_ratio=2,
                 drop_path=0.1,
                 layer_scale_init_value=0.0,
                 pconv_fw_type='split_cat'
                 ):
        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.n_div = n_div

        mlp_hidden_dim = int(dim * mlp_ratio)

        mlp_layer = [
            Conv(dim, mlp_hidden_dim, 1),
            nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
        ]

        self.mlp = nn.Sequential(*mlp_layer)

        self.spatial_mixing = Partial_conv3(
            dim,
            n_div,
            pconv_fw_type
        )
        
        self.adjust_channel = None
        if inc != dim:
            self.adjust_channel = Conv(inc, dim, 1)

        if layer_scale_init_value > 0:
            self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.forward = self.forward_layer_scale
        else:
            self.forward = self.forward

    def forward(self, x):
        if self.adjust_channel is not None:
            x = self.adjust_channel(x)
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(self.mlp(x))
        return x

    def forward_layer_scale(self, x):
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(
            self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
        return x

class C3_Faster(C3):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(Faster_Block(c_, c_) for _ in range(n)))

class C2f_Faster(C2f):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(Faster_Block(self.c, self.c) for _ in range(n))

第②步:进行声明

(1)定位到block.py
​(2)定位到_init_.py
(3)修改parse_model函数

可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明

代码语言:javascript
代码运行次数:0
运行
复制
def parse_model(d, ch, verbose=True, warehouse_manager=None):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast
 
    # Args
    max_channels = float("inf")
    nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
    if scales:
        scale = d.get("scale")
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        if len(scales[scale]) == 3:
            depth, width, max_channels = scales[scale]
        elif len(scales[scale]) == 4:
            depth, width, max_channels, threshold = scales[scale]
 
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
 
    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<60}{'arguments':<50}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a
        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in {
            Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR, 
            C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,
            C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
            C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,
            DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,
            OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,
            C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,
            C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,
            C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,
            C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,
            C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,
            C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
            C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,
            C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
            C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,
            C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,
            C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,
            C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,
            C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,
            C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
            C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
            C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
            C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
            MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
        }:
            if args[0] == 'head_channel':
                args[0] = d[args[0]]
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            if m is C2fAttn:
                args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channels
                args[2] = int(
                    max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
                )  # num heads
 
            args = [c1, c2, *args[1:]]
            if m in (KWConv, C2f_KW, C3_KW):
                args.insert(2, f'layer{i}')
                args.insert(2, warehouse_manager)
            if m in (DySnakeConv,):
                c2 = c2 * 3
            if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in {
                     BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,
                     VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
                     C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,
                     C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,
                     C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, 
                     C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,
                     C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,
                     C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,
                     C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
                     C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,
                     C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
                     C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,
                     C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,
                     C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,
                     C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,
                     C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
                     C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
                     C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
                     C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
                     MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
                     }:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m in {AIFI, AIFI_RepBN}:
            args = [ch[f], *args]
            c2 = args[0]
        elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):
            c1, cm, c2 = ch[f], args[0], args[1]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
                cm = make_divisible(min(cm, max_channels) * width, 8)
            args = [c1, cm, c2, *args[2:]]
            if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):
            args.append([ch[x] for x in f])
            if m in SEGMENT_CLASS:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):
                    args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):
                args[1] = make_divisible(min(args[1], max_channels) * width, 8)
            if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        elif m is Fusion:
            args[0] = d[args[0]]
            c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])
            args = [c1, args[0]]
        elif m is CBLinear:
            c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)
            c1 = ch[f]
            args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]
        elif m is CBFuse:
            c2 = ch[f[-1]]
        elif isinstance(m, str):
            t = m
            if len(args) == 2:        
                m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)
            elif len(args) == 1:
                m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,
                   fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,
                   EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,
                   efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,
                   vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,
                   RevCol,
                   lsknet_t, lsknet_s,
                   SwinTransformer_Tiny,
                   repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,
                   CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,
                   unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,
                   transnext_micro, transnext_tiny, transnext_small, transnext_base,
                   RMT_T, RMT_S, RMT_B, RMT_L,
                   PKINET_T, PKINET_S, PKINET_B,
                   MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,
                   starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4
                   }:
            if m is RevCol:
                args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]
                args[2] = [max(round(k * depth), 1) for k in args[2]]
            m = m(*args)
            c2 = m.channel
        elif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,
                   TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,
                   SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,
                   EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,
                   FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN, 
                   DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:
            c2 = ch[f]
            args = [c2, *args]
            # print(args)
        elif m in {SimAM, SpatialGroupEnhance}:
            c2 = ch[f]
        elif m is ContextGuidedBlock_Down:
            c2 = ch[f] * 2
            args = [ch[f], c2, *args]
        elif m is BiFusion:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [c1, c2]
        # --------------GOLD-YOLO--------------
        elif m in {SimFusion_4in, AdvPoolFusion}:
            c2 = sum(ch[x] for x in f)
        elif m is SimFusion_3in:
            c2 = args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [[ch[f_] for f_ in f], c2]
        elif m is IFM:
            c1 = ch[f]
            c2 = sum(args[0])
            args = [c1, *args]
        elif m is InjectionMultiSum_Auto_pool:
            c1 = ch[f[0]]
            c2 = args[0]
            args = [c1, *args]
        elif m is PyramidPoolAgg:
            c2 = args[0]
            args = [sum([ch[f_] for f_ in f]), *args]
        elif m is TopBasicLayer:
            c2 = sum(args[1])
        # --------------GOLD-YOLO--------------
        # --------------ASF--------------
        elif m is Zoom_cat:
            c2 = sum(ch[x] for x in f)
        elif m is Add:
            c2 = ch[f[-1]]
        elif m in {ScalSeq, DynamicScalSeq}:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(args[0] * width, 8)
            args = [c1, c2]
        elif m is asf_attention_model:
            args = [ch[f[-1]]]
        # --------------ASF--------------
        elif m is SDI:
            args = [[ch[x] for x in f]]
        elif m is Multiply:
            c2 = ch[f[0]]
        elif m is FocusFeature:
            c1 = [ch[x] for x in f]
            c2 = int(c1[1] * 0.5 * 3)
            args = [c1, *args]
        elif m is DASI:
            c1 = [ch[x] for x in f]
            args = [c1, c2]
        elif m is CSMHSA:
            c1 = [ch[x] for x in f]
            c2 = ch[f[-1]]
            args = [c1, c2]
        elif m is CFC_CRB:
            c1 = ch[f]
            c2 = c1 // 2
            args = [c1, *args]
        elif m is SFC_G2:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:
            c2 = ch[f[1]]
            args = [c2, *args]
        elif m in {ContextGuideFusionModule}:
            c1 = [ch[x] for x in f]
            c2 = 2 * c1[1]
            args = [c1]
        # elif m in {PSA}:
        #     c2 = ch[f]
        #     args = [c2, *args]
        elif m in {SBA}:
            c1 = [ch[x] for x in f]
            c2 = c1[-1]
            args = [c1, c2]
        elif m in {WaveletPool}:
            c2 = ch[f] * 4
        elif m in {WaveletUnPool}:
            c2 = ch[f] // 4
        elif m in {CSPOmniKernel}:
            c2 = ch[f]
            args = [c2]
        elif m in {ChannelTransformer, PyramidContextExtraction}:
            c1 = [ch[x] for x in f]
            c2 = c1
            args = [c1]
        elif m in {RCM}:
            c2 = ch[f]
            args = [c2, *args]
        elif m in {DynamicInterpolationFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f]]
        elif m in {FuseBlockMulti}:
            c2 = ch[f[0]]
            args = [c2]
        elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:
            c2 = [ch[x] for x in f]
            args = [c2[0], *args]
        elif m in {FreqFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f], *args]
        elif m in {DynamicAlignFusion}:
            c2 = args[0]
            args = [[ch[x] for x in f], c2]
        elif m in {ConvEdgeFusion}:
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [[ch[x] for x in f], c2]
        elif m in {MutilScaleEdgeInfoGenetator}:
            c1 = ch[f]
            c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]
            args = [c1, c2]
        elif m in {MultiScaleGatedAttn}:
            c1 = [ch[x] for x in f]
            c2 = min(c1)
            args = [c1]
        elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {GetIndexOutput}:
            c2 = ch[f][args[0]]
        elif m is HyperComputeModule:
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, threshold]
        else:
            c2 = ch[f]
 
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<60}{str(args):<50}")  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

第③步:yolov8.yaml文件修改

在下述文件夹中创立yolov8-C2f-Faster.yaml

代码语言:javascript
代码运行次数:0
运行
复制
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f_Faster, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_Faster, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_Faster, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_Faster, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_Faster, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_Faster, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_Faster, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_Faster, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

第④步:验证是否加入成功

将train.py中的配置文件进行修改,并运行

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2025-03-08,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 💯一、FasterNet介绍
    • 1. 简介
    • 2. PConv
      • 2.1. DWConv的问题
      • 2.2. 部分卷积(PConv)
    • 3. FasterNet架构
    • 4. FasterBlock
  • 💯二、具体添加方法
    • 第①步:定位到block.py
    • 第②步:进行声明
      • (1)定位到block.py
      • ​(2)定位到_init_.py
      • (3)修改parse_model函数
    • 第③步:yolov8.yaml文件修改
    • 第④步:验证是否加入成功
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档