前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >Deep Learning with PyTorch: A 60 Minute Blitz > Training a Classifier

Deep Learning with PyTorch: A 60 Minute Blitz > Training a Classifier

原创
作者头像
望天
发布于 2024-06-12 13:00:20
发布于 2024-06-12 13:00:20
19000
代码可运行
举报
文章被收录于专栏:along的开发之旅along的开发之旅
运行总次数:0
代码可运行

This is it. You have seen how to define neural networks, compute loss and make updates to the weights of the network.

Now you might be thinking,

What about data?

Generally, when you have to deal with image, text, audio or video data, you can use standard python packages that load data into a numpy array. Then you can convert this array into a torch.*Tensor.

  • For images, packages such as Pillow, OpenCV are useful
  • For audio, packages such as scipy and librosa
  • For text, either raw Python or Cython based loading, or NLTK and SpaCy are useful

Specifically for vision, we have created a package called torchvision, that has data loaders for common datasets such as ImageNet, CIFAR10, MNIST, etc. and data transformers for images, viz., torchvision.datasets and torch.utils.data.DataLoader.

This provides a huge convenience and avoids writing boilerplate code.

For this tutorial, we will use the CIFAR10 dataset. It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are of size 3x32x32, i.e. 3-channel color images of 32x32 pixels in size.

cifar10
cifar10

Training an image classifier

We will do the following steps in order:

  • Load and normalize the CIFAR10 training and test datasets using torchvision
  • Define a Convolutional Neural Network
  • Define a loss function
  • Train the network on the training data
  • Test the network on the test data

Load and normalize CIFAR10

Using torchvision, it’s extremely easy to load CIFAR10.

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import torch
import torchvision
import torchvision.transforms as transforms

The output of torchvision datasets are PILImage images of range 0, 1. We transform them to Tensors of normalized range -1, 1.

If running on Windows and you get a BrokenPipeError, try setting the num_worker of torch.utils.data.DataLoader() to 0.

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

batch_size = 4

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
代码语言:shell
AI代码解释
复制
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz

  0%|          | 0/170498071 [00:00<?, ?it/s]
  0%|          | 524288/170498071 [00:00<00:32, 5235308.45it/s]
  4%|4         | 7405568/170498071 [00:00<00:03, 42601567.17it/s]
 11%|#         | 18481152/170498071 [00:00<00:02, 73684499.13it/s]
 17%|#7        | 29523968/170498071 [00:00<00:01, 88175852.55it/s]
 24%|##3       | 40599552/170498071 [00:00<00:01, 96289757.40it/s]
 30%|###       | 51609600/170498071 [00:00<00:01, 100945480.91it/s]
 37%|###6      | 62685184/170498071 [00:00<00:01, 104027868.32it/s]
 43%|####3     | 73728000/170498071 [00:00<00:00, 106024326.73it/s]
 50%|####9     | 84738048/170498071 [00:00<00:00, 107246418.87it/s]
 56%|#####6    | 95748096/170498071 [00:01<00:00, 108114942.10it/s]
 63%|######2   | 106725376/170498071 [00:01<00:00, 108610075.98it/s]
 69%|######9   | 117669888/170498071 [00:01<00:00, 108842437.11it/s]
 75%|#######5  | 128647168/170498071 [00:01<00:00, 109098628.69it/s]
 82%|########1 | 139558912/170498071 [00:01<00:00, 109100098.57it/s]
 88%|########8 | 150536192/170498071 [00:01<00:00, 109223962.22it/s]
 95%|#########4| 161480704/170498071 [00:01<00:00, 109104309.53it/s]
100%|##########| 170498071/170498071 [00:01<00:00, 101114552.52it/s]
Extracting ./data/cifar-10-python.tar.gz to ./data
Files already downloaded and verified

Let us show some of the training images, for fun.

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import matplotlib.pyplot as plt
import numpy as np

# functions to show an image


def imshow(img):
    img = img / 2 + 0.5     # unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


# get some random training images
dataiter = iter(trainloader)
images, labels = next(dataiter)

# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join(f'{classes[labels[j]]:5s}' for j in range(batch_size)))

frog plane deer car

Define a Convolutional Neural Network

Copy the neural network from the Neural Networks section before and modify it to take 3-channel images (instead of 1-channel images as it was defined).

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = torch.flatten(x, 1) # flatten all dimensions except batch
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()

Define a Loss function and optimizer

Let’s use a Classification Cross-Entropy loss and SGD with momentum.

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

Train the network

This is when things start to get interesting. We simply have to loop over our data iterator, and feed the inputs to the network and optimize.

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0

print('Finished Training')
代码语言:shell
AI代码解释
复制
[1,  2000] loss: 2.144
[1,  4000] loss: 1.835
[1,  6000] loss: 1.677
[1,  8000] loss: 1.573
[1, 10000] loss: 1.526
[1, 12000] loss: 1.447
[2,  2000] loss: 1.405
[2,  4000] loss: 1.363
[2,  6000] loss: 1.341
[2,  8000] loss: 1.340
[2, 10000] loss: 1.315
[2, 12000] loss: 1.281
Finished Training

Let’s quickly save our trained model:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

See here for

more details on saving PyTorch models.

Test the network on the test data

We have trained the network for 2 passes over the training dataset. But we need to check if the network has learnt anything at all.

We will check this by predicting the class label that the neural network outputs, and checking it against the ground-truth. If the prediction is correct, we add the sample to the list of correct predictions.

Okay, first step. Let us display an image from the test set to get familiar.

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
dataiter = iter(testloader)
images, labels = next(dataiter)

# print images
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join(f'{classes[labels[j]]:5s}' for j in range(4)))

GroundTruth: cat ship ship plane

Next, let’s load back in our saved model (note: saving and re-loading the model wasn’t necessary here, we only did it to illustrate how to do so):

net = Net()

net.load_state_dict(torch.load(PATH))

<All keys matched successfully>

Okay, now let us see what the neural network thinks these examples above are:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
outputs = net(images)

The outputs are energies for the 10 classes. The higher the energy for a class, the more the network thinks that the image is of the particular class. So, let’s get the index of the highest energy:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
_, predicted = torch.max(outputs, 1)

print('Predicted: ', ' '.join(f'{classes[predicted[j]]:5s}'
                              for j in range(4)))

Predicted: cat ship truck ship The results seem pretty good.

Let us look at how the network performs on the whole dataset.

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
correct = 0
total = 0
# since we're not training, we don't need to calculate the gradients for our outputs
with torch.no_grad():
    for data in testloader:
        images, labels = data
        # calculate outputs by running images through the network
        outputs = net(images)
        # the class with the highest energy is what we choose as prediction
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %')

Accuracy of the network on the 10000 test images: 54 %

That looks way better than chance, which is 10% accuracy (randomly picking a class out of 10 classes). Seems like the network learnt something.

Hmmm, what are the classes that performed well, and the classes that did not perform well:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
# prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}

# again no gradients needed
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predictions = torch.max(outputs, 1)
        # collect the correct predictions for each class
        for label, prediction in zip(labels, predictions):
            if label == prediction:
                correct_pred[classes[label]] += 1
            total_pred[classes[label]] += 1


# print accuracy for each class
for classname, correct_count in correct_pred.items():
    accuracy = 100 * float(correct_count) / total_pred[classname]
    print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %')
代码语言:python
代码运行次数:0
运行
AI代码解释
复制
Accuracy for class: plane is 37.9 %
Accuracy for class: car   is 62.2 %
Accuracy for class: bird  is 45.6 %
Accuracy for class: cat   is 29.2 %
Accuracy for class: deer  is 50.3 %
Accuracy for class: dog   is 45.9 %
Accuracy for class: frog  is 60.1 %
Accuracy for class: horse is 70.3 %
Accuracy for class: ship  is 82.9 %
Accuracy for class: truck is 63.1 %

Okay, so what next?

How do we run these neural networks on the GPU?

Training on GPU

Just like how you transfer a Tensor onto the GPU, you transfer the neural net onto the GPU.

Let’s first define our device as the first visible cuda device if we have CUDA available:

也有常见的苹果的mps,华为的npu.

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# Assuming that we are on a CUDA machine, this should print a CUDA device:

print(device)

cuda:0

The rest of this section assumes that device is a CUDA device.

Then these methods will recursively go over all modules and convert their parameters and buffers to CUDA tensors:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
net.to(device)

Remember that you will have to send the inputs and targets at every step to the GPU too:

代码语言:python
代码运行次数:0
运行
AI代码解释
复制
inputs, labels = data[0].to(device), data[1].to(device)

Why don’t I notice MASSIVE speedup compared to CPU? Because your network is really small.

Exercise: Try increasing the width of your network (argument 2 of the first nn.Conv2d, and argument 1 of the second nn.Conv2d – they need to be the same number), see what kind of speedup you get.

Goals achieved:

  • Understanding PyTorch’s Tensor library and neural networks at a high level.
  • Train a small neural network to classify images

Training on multiple GPUs

If you want to see even more MASSIVE speedup using all of your GPUs, please check out Optional: Data Parallelism.

Where do I go next?

内容主要来自

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
暂无评论
推荐阅读
🔥【设计模式】策略模式
大家好,我是“前端小鑫同学”,😇长期从事前端开发,安卓开发,热衷技术,在编程路上越走越远~ 场景介绍: 我们有一款识视频App,目前可以登录的用户分为临时用户、普通用户、管理员三种,还有会员等级的一个分类,主要有无会员、普通会员,高级会员。在最初设计稿中指明,可以观赏高清视频的只能是普通用户并且开通了高级会员,可以登录管理平台的支能是管理员。 需求描述: 根据上面的描述我们先准备一个权限和一个会员的枚举: // 1. 临时用户/普通用户/管理员 enum Role { casual, genera
前端小鑫同学
2022/12/26
2510
C++设计模式——策略模式
在软件开发中,设计模式是提高代码可读性、可维护性和可扩展性的重要工具之一。其中,策略模式是一种行为型设计模式,它允许在运行时选择不同算法的行为,并支持不同策略的无缝切换。
程序员的园
2024/07/18
1530
C++设计模式——策略模式
设计模式之策略模式
策略模式(Strategy Pattern)隶属于设计模式中的行为型模式,是日常开发中使用最广的一个模式,相对于其他模式,自认为这个模式是最容易理解和使用的。
Dylan Liu
2019/08/22
6380
策略模式虽好,Policy-based design更佳
策略模式(设计模式——策略模式)大家耳熟能详,简言之,策略模式基于运虚表指针实现多态,但运行时的多态是有时间成本的。对于性能要求高的场景,策略模式反而不是最优选择。
程序员的园
2024/07/18
1370
策略模式虽好,Policy-based design更佳
大厂面试必备之设计模式:漫画策略模式
官方定义不太好理解,我翻译一下,在策略模式中,会针对一个行为(比如支付),定义多个实现类,每个类都封装具体的实现算法,并且为了保证他们是同一行为,通常这些实现类,都会实现同一个接口。比如微信支付,支付宝支付,微信好友支付,QQ支付,缺省支付方式都是一个算法。
天才少年
2020/07/04
4660
大厂面试必备之设计模式:漫画策略模式
php设计模式(二十三):策略模式(Strategy)
策略模式又称为:Strategy。策略模式是一种行为设计模式,它能让你定义一系列算法,并将每种算法分别放入独立的类,以使算法的对象能够相互替换。
陈大剩博客
2023/07/09
3060
php设计模式(二十三):策略模式(Strategy)
白话设计模式之策略模式
该模式定义了一系列算法,并将每个算法封装起来,使它们可以相互替换,且算法的变化不会影响使用算法的客户,比如公司都会为我们每个人交公积金,但是每个公司所交的比例又不一样,又如我们每个每个人出行所选择的交通工具也不一样,有人开劳斯莱斯出行,有人开宾利,而我要么坐地铁,要么骑共享单车
小四的技术之旅
2022/07/26
3700
白话设计模式之策略模式
通俗易懂设计模式解析——策略模式
  今天我们来看策略模式【Stragety Pattern【行为型】】,这个模式还是比较好理解的。策略怎么理解呢?一般是指:1. 可以实现目标的方案集合;2. 根据形势发展而制定的行动方针和斗争方法;3. 有斗争艺术,能注意方式方法。总的来说呢就是针对一个目的的不同的方法集合。这里要讲的策略模式怎么理解呢?简单的说就是对于一个类的行为或者其算法可以在运行时更改替换。
小世界的野孩子
2019/10/16
5340
通俗易懂设计模式解析——策略模式
解锁新姿势:探讨复杂的 if-else 语句“优雅处理”的思路
在之前文章说到,简单 if-else,可以使用 卫语句 进行优化。但是在实际开发中,往往不是简单 if-else 结构,我们通常会不经意间写下如下代码:
用户1516716
2020/02/20
8250
Java常用设计模式--策略模式(Strategy Pattern)
在策略模式(Strategy Pattern)中,一个类的行为或其算法可以在运行时更改。这种类型的设计模式属于行为型模式。
gang_luo
2020/08/13
3100
设计模式-策略模式
每当想起去书店买书,老是觉得老火,为啥同样一本书,卖我总是比别人贵呢?我买就只打8折为啥其他有7折的???人品问题???不是的,是因为会员制度,不同的会员等级享受不同的折扣,这个很类似我们的策略模式,不同的角色可以定义不同的算法。
逍遥壮士
2020/09/18
4460
设计模式-策略模式
Java设计模式——策略模式[通俗易懂]
策略模式:策略模式是一种行为型模式,它将对象和行为分开,将行为定义为 一个行为接口 和 具体行为的实现。策略模式最大的特点是行为的变化,行为之间可以相互替换。每个if判断都可以理解为就是一个策略。本模式使得算法可独立于使用它的用户而变化
全栈程序员站长
2022/09/30
4700
Java设计模式——策略模式[通俗易懂]
一起学设计模式 - 策略模式
策略模式: 是对算法的包装,是把使用算法的责任和算法本身分割开来,委派给不同的对象管理。策略模式通常把一个系列的算法包装到一系列的策略类里面,作为一个抽象策略类的子类。用一句话来说,就是:“准备一组算法,并将每一个算法封装起来,使得它们可以互换”。下面就以一个示意性的实现讲解策略模式实例的结构。
battcn
2018/08/03
3920
一起学设计模式 - 策略模式
设计模式之 - 策略落实
策略模式:它定义了算法家族,分别封装起来,让他们之间可以互相替换,此模式的变化,不会影响到使用算法的客户。
一个程序员的成长
2020/11/25
3630
设计模式之 - 策略落实
设计模式 | 策略模式及典型应用
在软件开发中,我们也常常会遇到类似的情况,实现某一个功能有多条途径,每一条途径对应一种算法,此时我们可以使用一种设计模式来实现灵活地选择解决途径,也能够方便地增加新的解决途径。
小旋锋
2019/01/21
1.3K0
设计模式丨策略模式
如果在一个系统里面有许多类,它们之间的区别仅在于它们的行为,那么使用策略模式可以动态地让一个对象在许多行为中选择一种行为。
星河造梦坊官方
2024/08/15
1480
设计模式丨策略模式
前端也要学系列:设计模式之策略模式
上边这句话,从字面来看很简单。但是如何在开发过程中去应用,仅凭一个定义依然是一头雾水。以笔者曾经做过的商户进销存系统为例:
司想君
2018/08/01
3550
前端也要学系列:设计模式之策略模式
设计模式学习之策略模式
**定义:**策略模式定义了一系列的算法,并将每一个算法封装起来,而且使他们可以相互替换,让算法独立于使用它的客户而独立变化。
老马的编程之旅
2022/06/22
2010
设计模式学习之策略模式
前端的设计模式系列-策略模式
代码也写了几年了,设计模式处于看了忘,忘了看的状态,最近对设计模式有了点感觉,索性就再学习总结下吧。
windliang
2022/08/20
2850
前端的设计模式系列-策略模式
设计模式的征途—18.策略(Strategy)模式
俗话说条条大路通罗马,很多情况下实现某个目标地途径都不只一条。在软件开发中,也会时常遇到这样的情况,实现某一个功能有多条途径,每一条途径都对应一种算法。此时,可以使用一种设计模式来实现灵活地选择解决途径,也能够方便地增加新的解决途径。
Edison Zhou
2018/08/21
3900
设计模式的征途—18.策略(Strategy)模式
相关推荐
🔥【设计模式】策略模式
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档