前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >过压保护(2)_过压保护值和欠压保护值

过压保护(2)_过压保护值和欠压保护值

作者头像
全栈程序员站长
发布于 2022-09-20 05:14:02
发布于 2022-09-20 05:14:02
1.7K0
举报

大家好,又见面了,我是你们的朋友全栈君。

http://www.elecfans.com/dianlutu/protect/2009102499242.html

采用CW136构成的过压保护电路

图中是采用CW136构成的过压保护电路,当电子设备的供电电压由于某种原因超过额定电压值时, 使CW136正负极间达到5V,呈现低阻抗状态,立即触发晶闸管导通,短路电流瞬间即可将熔断丝熔断, 从而切断电源,实现电子设备的过压保护。

它是由一个P-N-P-N四层 (4 layers) 半导体构成的,中间形成了三个PN结。晶闸管导通条件为:加正向电压且门极有触发电流

晶闸管在工作过程中,它的阳极(A)和阴极(K)与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。

半控型晶闸管的工作条件:

1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。

2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性。

3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。门极只起触发作用。

4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

全控型晶闸管的工作条件:

1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。

2. 晶闸管承受正向阳极电压时,仅在门极承受正向电压(或电流)的情况下晶闸管才导通。这时晶闸管处于正向导通状态。

3. 一旦晶闸管开始导通,它就被钳住在导通状态,而此时门极电流可以取消。晶闸管不能被门极关断,像一个二极管一样导通,直到电流降至零和有反向偏置电压作用在晶闸管上时,它才会截止。当晶闸管再次进入正向阻断状态后,允许门极在某个可控的时刻将晶闸管再次触发导通。 [2]

在晶闸管导通后,如果不断的减小电源电压或增大回路电阻 ,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1+a2)≈0时,晶闸管恢复阻断状态。

http://www.chinaaet.com/article/index.aspx?id=20861

最简单的电源切换电路用两个二极管“或”的方式即可实现,但二极管的正向压降会浪费掉可观的电池电量。以单节锂离子电池为例,额定放电电压约为3.7V,那么0.7V的二极管正向压降使近20%的电池电量白白浪费掉。即使采用正向压降更低(0.3V-0.4V)肖特基二极管,也会有将近10%的电量被浪费掉。而肖特基二极管比较大的反向漏电(毫安级)又会产生另外一些问题。二极管也无法提供放电保护,需要额外增加开关及控制电路来做过放保护。

比较理想的方案是用MOSFET作为切换和保护开关。MOSFET具有毫欧级的导电阻,它所引起的压降几乎可以忽略。当电池电压过低时也可以利用MOSFET切断供电通路,保护电池。但需要设计一套专门的电路来检测电压和驱动MOSFET栅极。可以用一些标准电压比较器、电压基准和分离元件实现这部分功能,但这会增加电路的元件数和复杂度,增大静态功耗。

Maxim的MAX4838-MAX4842系列过压保护控制器设计用于为电路提供过、欠压保护IC内部集成了电压监视电路和高端N沟道MOSFET驱动器,正好可以借用它来实现上述控制。图1就是一个针对单节锂离子电池的应用而设计的应用电路。

该设计利用MAX4842的欠压锁定功能(UVLO)实现对于电池的放电保护。

MAX4842的欠压锁定门限为2.8V-3.2V,单节锂离子电池的放电终止电压为2.7V左右,电池放电到3.2V时也基本放空(如图2所示),

因此,无需任何调整,该门限范围恰好适用于单节锂电池。

另外,MAX4842的过压保护门限为4.4V-5.0V,也高于单节锂电的4.2V上限电压。

电源切换电路是利用MAX4842的使能控制引脚/EN配合分压电阻R1/R2实现的。

当没有外部电源接入时,如果电池电压高于2.8V-3.2V的保护门限,/EN被R2拉低, MAX4842驱动Q1、Q2的栅极为高电平使其导通,电池为负载供电;

当有外部电源接入时,通过R1/R2分压后在/EN引脚上产生的电压高于1.47V后 MAX4842被禁止,Q1、Q2被关闭,由外部电源给负载供电。

图中的二极管D2用于阻断灌入外部电源的反向电流,并防止/EN被错误拉高。 由于它串在外部供电通路上,损失一点效率没有关系。

http://bbs.dianyuan.com/topic/1053976

大家好,有人做过电路的过压保护方案吗?

如图,我打算用Pmos来做电路保护开关,当检测到过电压(应小于15V)时,切断电源,保护后级电路(额定电压5V,20mA),但没接触过mos,不知这种方案是否可行。几个问题:

1、MOS型号参数如何选择?(电路要求可达30V,mos导通电阻小)

2、MOS的电路设计方法,如电阻取值等?

3、是否有更好的过压保护电路方案?

5V 20mA用三极管就可以了,过压保护:

1.过压断开(三极管,MOS管,继电器),

2.过压吸收(稳压管,三极管,MOS管,压敏电阻),

3.过压转换(电压高了自动转换到合适的电压给后级)。

用TL431加正反鐀做就可以代用你的过压检测电路了。、

另,这么小的电流,用S8050的TO-92封装的就可以滿足要求了

http://bbs.dianyuan.com/topic/677773

输入电源电压为+-24V,要求当电压超过29V时保护,我现在设计了+24V的保护电路, 但负电源(-24V)绕晕了。要求超过-29V时保护。负电源的过压保护怎么做呀?先谢了,呵呵

其实负电源也一样,下图是在你的原图上修改的

这是我昨晚上想的,跟您的思路差不多。不过LM393是开漏输出的,您可能没注意到。

过流过压保护方面,瑞侃电子PolyZenTM元件器件是由精密齐纳二极管和聚合物正温度系数(PPTC)元件组合而成的集成电路。它是用于防止感应尖峰电压、瞬间高电压、错用电源适配器对电路产生过压、过流危害的保护器件。内部结构如下图所示。

在正常工作时,VIN输入电压高于齐纳二极管的击穿电压VZ,有IFLT电流经齐纳二极管到地,VOUT输出稳定的电压。有不正常的过压输入VIN 时,则齐纳二极管的IFLT会产生过流,当器件上有过流时,其电阻由低阻态瞬变到高阻态,使在其上的压降大增,VOUT输出基本不变,而流过齐纳二极管的 电流IFLT反而减小,如下图所示。器件上电压降的增大既保护了齐纳二极管,又保护了下游的电路。另外,若被保护的下游电路中存在有局部短路或短路故障 时,IOUT会增加,PPTC元件由低阻态变成高阻态,可使电路得到过流保护。

PolyZen器件是聚合物保护的精密齐纳二极管微型集成模块。这些器件具有可复位式防止大功率故障事件的特点,同时只有 0.7W 功耗,无需特殊散热装置。 PolyZen 器件具有相对平稳的电压与电流响应,这有助于对输出电压的钳位,即使在输入电压和电源电流变化的情况下也不例外。 PolyZen 微型集成模块的一个先进的功能是其齐纳二极管和后续电子元件受到电阻性的非线性聚合物PTC(正温度系数)层的额外保护。该 PTC 层完全集成在设备中, 热耦合到二极管,并电气串联连接在在 VIN 和二极管钳位的 VOUT 之间。 该先进的 PTC 层通过由低阻态向高阻态转换 (也被称为“动作”)从而对二极管加热或过电流事件作出响应。动作的 PTC将限制电流并生成压降,这有利于保护齐纳二极管和后续电子元件。这种集成式 PTC 有效地增强二极管的功率处理能力。

LTC4360-1 / LTC4360-2 – 过压保护控制器

特点
  • 2.5V 至 5.5V 工作电压
  • 过压保护高达 80V
  • 对于大多数应用无需使用输入电容器或 TVS (瞬态电压抑制器)
  • 准确度为 2% 的 5.8V 过压门限
  • <1μs 的过压关断时间,逐步式停机
  • 控制 N 沟道 MOSFET
  • 可调的上电 dV/dt 限制浪涌电流
  • 反向电压保护 (LTC4360-2)
  • 电源良好输出
  • 低电流停机模式 (LTC4360-1)
  • 采用纤巧型 8 引脚 SC70 封装
描述

LTC®4360 过压保护控制器可保护 2.5V 至 5.5V 系统免遭电源过压的损坏。它专为具有多种电源选项 (包括墙上适配器、汽车电池适配器和 USB 端口) 的便携式设备而设计。

LTC4360 用于控制一个与输入电源串联的外部 N 沟道 MOSFET。在过压瞬变期间,LTC4360 能在 1μs 的时间之内关断 MOSFET,从而将下游的组件与输入电源隔离开来。电感性电缆瞬变被 MOSFET 和负载电容所消减。在大多数应用中,LTC4360 可提供针对高达 80V 瞬态电压的保护作用,而无需使用瞬态电压抑制器或其他外部组件。

LTC4360 具有一种用于限制浪涌电流的延迟启动和可调 dV/dt 斜坡上升功能。一个PWRGD 引脚提供了针对 VIN 的电源良好监视功能。在一个过压情况之后,LTC4360 将在一个启动延迟之后自动重新起动。LTC4360-1 具有一种受控于 ON 引脚的软停机功能,而 LTC4360-2 则控制一个任选的外部 P 沟道 MOSFET 以提供负电压保护。

应用
  • USB 保护
  • 手持式计算机
  • 蜂窝电话 / 智能手机
  • MP3 / MP4 播放器
  • 数码相机

LTC4361-1 / LTC4361-2 – 过压 / 过流保护控制器

特点
  • 2.5V 至 5.5V 工作电压
  • 过压保护高达 80V
  • 对于大多数应用无需使用输入电容器或 TVS (瞬态电压抑制器)
  • 准确度为 2% 的 5.8V 过压门限
  • 准确度为 10% 的 50mV 过流电路断路器
  • <1μs 的过压关断时间,逐步式停机
  • 控制 N 沟道 MOSFET
  • 可调的上电 dV/dt 限制浪涌电流
  • 反向电压保护
  • 电源良好输出
  • 低电流停机模式
  • 在过流之后锁断 (LTC4361-1) 或自动重试 (LTC4361-2)
  • 采用 8 引脚 ThinSOTTM 封装和 8 引脚 (2mm x 2mm) DFN 封装
描述

LTC®4361 过压 / 过流保护控制器可保护 2.5V 至 5.5V 系统免遭输入电源过压的损坏。它专为具有多种电源选项 (包括墙上适配器、汽车电池适配器和 USB 端口) 的便携式设备而设计。

LTC4361 用于控制一个与输入电源串联的外部 N 沟道 MOSFET。在过压瞬变期间,LTC4361 能在 1μs 的时间之内关断 MOSFET,从而将下游的组件与输入电源隔离开来。电感性电缆瞬变被 MOSFET 和负载电容所消减。在大多数应用中,LTC4361 可提供针对高达 80V 瞬态电压的保护作用,而无需使用瞬态电压抑制器或其他外部组件。

LTC4361 具有一种用于限制浪涌电流的延迟启动和可调 dV/dt 斜坡上升功能。一个PWRGD 引脚提供了针对 VIN 的电源良好监视功能。LTC4361 具有一种受控于 ON 引脚的软停机功能,并驱动一个任选的外部 P 沟道 MOSFET 以提供负电压保护。在一个过压情况之后,LTC4361 将在一个启动延迟之后自动重新起动。在一个过流情况之后,LTC4361-1 保持关断状态,而 LTC4361-2 将在一个 130ms 的启动延迟之后自动重新起动。

描述

LTC®4365 可为那些电源输入电压有可能过高、过低、甚至为负值的应用提供保护。该器件通过控制一对外部 N 沟道 MOSFET 的栅极电压来实现这种保护功能,以确保输出处于一个安全的工作范围之内。

LTC4365 能承受 -40V 至 60V 的电压,并具有一个 2.5V 至 34V 的工作范围,而在正常运作中的电流消耗仅为 125μA。

两个比较器输入采用一个外部阻性分压器提供了过压 (OV) 和欠压 (UV) 设定点的配置。一个停机引脚负责提供用于使能和停用 MOSFET 以及将器件置于一种低电流停机状态的外部控制。一个故障输出可提供被拉至低电平的 GATE 引脚状态。当器件处于停机状态或输入电压超出了 UV 和 OV 设定点的范围时,将指示有故障发生。

当Vi超过一定电压时,TL431触发,使晶闸管导通,产 生瞬间大电流,将保险丝熔断,从而保护后极电路。V保护点=(1+R1/R2)Vref

当TL431的参考输入端的电压低于2.5V时,流过TL431的电流不超过400 µA,因此R3上的压降很小。当电源电压增大使得TL431的参考输入端的电压超过2.5V时,TL431 导通,R3上的压降增加,直到晶闸管导通。

这个电路的工作电压更准确。但是必须要用双向晶闸管,普通的单向晶闸管不能工作。

进一步消除温度对晶闸管的影响。

当Vi超过一定电压时,TL431触发,使晶闸管导通,产 生瞬间大电流,将保险丝熔断,从而保护后极电路。V保护点=(1+R1/R2)Vref

TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。

发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/167533.html原文链接:https://javaforall.cn

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
H4012 30V24V降压12V5V3.3V3.5A同步整流降压芯片 Buck-DCDC 100%占空比
同步整流是一种通过主动控制功率MOSFET代替传统整流二极管,以降低导通损耗、提升电源效率的整流技术。其工作过程如下:
用户11416530
2025/04/29
490
H4012 30V24V降压12V5V3.3V3.5A同步整流降压芯片 Buck-DCDC 100%占空比
MOSFET 数据手册,试试这样看!
MOS管数据手册上的相关参数有很多,以MOS管VBZM7N60为例,下面一起来看一看,MOS管的数据手册一般会包含哪些参数吧。
AI 电堂
2021/08/23
2K0
MOSFET 数据手册,试试这样看!
供电电路切换与锂电池充电电路设计
目前市面上的充电管理IC,都是按照充电电池的充电特性来设计的。充电电池根据充电介质不同,分为镍氢电池,锂电池等。由于锂电池没有记忆效应,所以目前在各种手持设备和便携式的电子产品中,都采用锂电池供电。 由于锂电池的充电特性。充电过程一般分为三个过程:   
233333
2020/08/20
1.6K0
MOSFET开关电路详解
今天和同事讨论起了公司用到的一个MOS管开关电路,针对其中的几个关键点做了比较系统的分析总结。
ElectricDeveloper
2021/08/18
5.6K0
19种电压转换的电路设计方式
大家好,又见面了,我是你们的朋友全栈君。 博主福利:100G+电子设计学习资源包! http://mp.weixin.qq.com/mp/homepage?__biz=MzU3OTczMzk5Mg==
全栈程序员站长
2022/09/05
8020
19种电压转换的电路设计方式
栅极驱动 IC 自举电路的设计与应用指南
硬件工程师应该都用过buck,一些buck芯片会有类似下面的自举电容,有时还会串联一个电阻。
芯动大师
2023/12/27
5450
栅极驱动 IC 自举电路的设计与应用指南
新课上线 | 三极管高级应用
三极管有三个工作状态:截止、放大、饱和,放大状态很有学问也很复杂,多用于集成芯片,比如运放,现在不讨论。
AI 电堂
2023/02/23
4660
新课上线 | 三极管高级应用
LDO产品的基础知识解析
压降电压VDO,是指为实现正常稳压,输入电压VIN必须高出所需输出电压VOUT(nom) 的最小压差。
芯动大师
2024/07/01
1440
LDO产品的基础知识解析
19个常用的5V转3.3V技巧
标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V,就不能使用它们。压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO 系统的框图,标注了相应的电流。
MCU起航
2021/10/14
1.3K0
最全电源电路图详解
用电路元件符号表示电路连接的图,叫电路图。电路图是人们为研究、工程规划的需要,用物理电学标准化的符号绘制的一种表示各元器件组成及器件关系的原理布局图,可以得知组件间的工作原理,为分析性能、安装电子、电器产品提供规划方案。
MCU起航
2022/05/16
1.4K0
最全电源电路图详解
场效应管开关电路_场效应管电子开关原理
MOSFET一直是大多数N沟道场效应管开关电路电源(SMPS)选择的晶体管技术。MOSFET用作主开关晶体管,并用作门控整流器来提高效率。本设计实例对P沟道和N沟道增强型MOSFET做了比较,以便选择最适合电源应用的开关。MOSFET一直是大多数开关电源(SMPS)首选的晶体管技术。当用作门控整流器时,MOSFET是主开关晶体管且兼具提高效率的作用。为选择最适合电源应用的开关。
全栈程序员站长
2022/09/28
8810
场效应管开关电路_场效应管电子开关原理
电源常用电路—驱动电路详解
数字电源控制核心对输入输出参数进行采集后,利用控制算法进行分析从而产生PWM控制信号,PWM信号将经过驱动电路的进行功率放大和隔离,随后接入功率开关器件从而完成电源的输出控制。本篇将主要针对电源的驱动电路进行讲解。
芯动大师
2024/03/16
3020
电源常用电路—驱动电路详解
MOS管开关电路_mos管作为开关的原理
MOS管开关电路是利用MOS管栅极(g)控制MOS管源极(s)和漏极(d)通断的原理构造的电路。因MOS管分为N沟道与P沟道,所以开关电路也主要分为两种。
全栈程序员站长
2022/11/08
5.2K0
MOS管开关电路_mos管作为开关的原理
eFuse电子保险丝,需要了解的技术干货来啦
eFuse基于一个简单概念,即通过测量已知电阻器上的电压来检测电流,然后在电流超过设计限值时,通过场效应晶体管(FET)切断电流。eFuse具有热保险丝无法实现特性、灵活性和功能。
芯动大师
2024/06/14
1.6K2
eFuse电子保险丝,需要了解的技术干货来啦
MOS管及其外围电路设计
常用的mos管驱动电路结构如图1所示,驱动信号经过图腾柱放大后,经过一个驱动电阻Rg给mos管驱动。其中Lk是驱动回路的感抗,一般包含mos管引脚的感抗,PCB走线的感抗等。在现在很多的应用中,用于放大驱动信号的图腾柱本身也是封装在专门的驱动芯片中。本文要回答的问题就是对于一个确定的功率管,如何合理地设计其对应的驱动电路(如驱动电阻阻值的计算,驱动芯片的选型等等)。 注1:图中的Rpd为mos管栅源极的下拉电阻,其作用是为了给mos管栅极积累的电荷提供泄放回路,一般取值在10k~几十k这一数量级。由于该电阻阻值较大,对于mos管的开关瞬态工作情况基本没有影响,因此在后文分析mos的开关瞬态时,均忽略Rpd的影响。 注2:Cgd,Cgs,Cds为mos管的三个寄生电容,在考虑mos管开关瞬态时,这三个电容的影响至关重要。
AI 电堂
2020/11/24
2.1K0
MOS管及其外围电路设计
常用电子元器件基本知识整理
它是导体的一种基本性质,与温度、材质、尺寸、横截面积相关。。电阻的主要物理特征是把电能变为热能,也可说它是一个耗能元件,电流经过它就产生内能,所以注意在选用电阻的时候要算一下电路的流过的电流,并选用合适功率的电阻,防止电阻由于过度发热产生不必要的麻烦。
电子交流圈
2022/03/21
6380
MOS管和IGBT管有什么区别?
在电路设计中,MOS管和IGBT管会经常出现,它们都可以作为开关元件来使用,MOS管和IGBT管在外形及特性参数也比较相似,那为什么有些电路用MOS管?而有些电路用IGBT管?
AI 电堂
2022/12/08
2.1K0
MOS管和IGBT管有什么区别?
高精度恒流/恒压(CC/CV)原边反馈功率转换器
PR6214是一款应用于小功率AC/DC充电器和电源适配器的高性能离线式功率开关转换器。PR6214采用PFM工作模式,使用原边反馈架构,无需次级反馈电路,因此省去了光耦和431,应用电路简单,降低了系统的成本和体积,提高了可靠性。芯片内置了高达±5%精度的恒流/恒压(CC/CV)控制电路,输出曲线如图所示。
芯动大师
2024/01/14
2030
高精度恒流/恒压(CC/CV)原边反馈功率转换器
设计低泄漏飞安电路,第 2 部分:组件选择
第1部分定义并描述了承载这些低电流的设计,解释了设计这些电路时出现的问题,并研究了屏蔽和防护方法的应用。在第 2 部分中,将研究元件选择如何影响低泄漏电路的性能,并讨论噪声如何渗透到低泄漏设计中。
云深无际
2024/08/20
1791
设计低泄漏飞安电路,第 2 部分:组件选择
半导体器件:TO252肖特基二极管MOSFET筛选测试与测试座解析
肖特基二极管是一种重要的半导体器件,在电子领域具有广泛的应用。它由肖特基结组成,具有优秀的电性能和尺寸小巧的特点。
ICsocketgirl
2024/05/20
2610
半导体器件:TO252肖特基二极管MOSFET筛选测试与测试座解析
相关推荐
H4012 30V24V降压12V5V3.3V3.5A同步整流降压芯片 Buck-DCDC 100%占空比
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档