Loading [MathJax]/jax/input/TeX/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >2022新年荐书!最值得一读的8部机器学习教程(PDF下载)

2022新年荐书!最值得一读的8部机器学习教程(PDF下载)

作者头像
新智元
发布于 2022-02-24 06:55:56
发布于 2022-02-24 06:55:56
2.4K0
举报
文章被收录于专栏:新智元新智元

新智元报道

编辑:David

【新智元导读】新的一年到了,小伙伴是不是总觉得时间太少,要学的东西太多?今天这篇荐书贴挑选了8本机器学习经典教程,由浅入深,从理论到实践,大部分可免费下载,一起来充电吧!

新的一年,是不是感觉时间太少,要学的东西太多了?

在过去的几年里,有不少讲深度学习的书籍。今天给小伙伴们推荐8本关于AI和机器学习的经典书籍,大部分都有完整版PDF下载。

这8本书从内容上看,可以分为四类:

  • 机器和深度学习基础知识(适合初学者)
  • 机器学习框架:Pytorch、Tensorflow 和 Keras
  • MLOP:云、生产和深度学习工程
  • 深度学习理论

机器学习和深度学习基础

Andriy Burkov:The Hundred-Page Machine Learning Book

如果你是新手,看这本书就很适合。如果是老手,可能会觉得这本书很无聊,讲的都是你已经知道的东西。

前两章重点介绍机器学习公式、符号和关键术语。随后,Burkov 分析了最重要的 ML 算法,如回归、决策树、支持向量机和 k-最近邻。

第 4 章是关于梯度下降和学习过程的,第 5 章是最佳实践的集合;即特征工程、正则化、超参数调整等。第 6 章专门介绍神经网络。

之后,Burkov 讨论了如何使用上述方法解决特定问题。书中解释了常见的机器学习挑战、陷阱以及有针对性的解决方案。最后讲到了无监督、自监督和推荐系统等内容。

PDF:

https://pdf.zlibcdn.com/dtoken/4d82356f2bb44f73f4a94a7c489f6b4f/The_hundred-page_machine_learning_book_by_Burkov,__3710356_(z-lib.org).pdf

Meor Amer:A visual introduction to Deep Learning

这本书非常适合喜欢通过直观视觉学习深度学习的人。

总的来说,我们发现这本书很容易理解,因为书中的图和文本之间处于很好的平衡。上一本100多页的书相比,这本书涉及的数学更少,插图更多。

书中在解释反向传播时非常关注细节,不会让读者迷失在数学中。不可否认,反向传播真的很难教,作者Meor在这方面做得很好。此外,书中还对混淆矩阵和 F1 分数等性能指标进行了彻底分析。

但是,这本书让编程人员可能不大方便。这本书讲的是理论的基本部分,但把代码留给读者去尝试。由于这本书的介绍比较笼统,理论和编程实践之间可能会有差距。

相关资源:https://www.kdimensions.com/l/visualdl

机器学习框架:Pytorch、Tensorflow、Keras

Eli Stevens, Luca Antiga, and Thomas Viehmann:Deep Learning with PyTorch

无论你处于什么阶段,要学习Pytorch大概都少不了这本书。本书分为3个部分。

第 1 部分:前 3 章介绍了 PyTorch 和张量操作。第 4 章从字面上描述了如何获取任何数据、视频或一行文本,并将其表示为张量,其中涵盖了医学图像、表格数据和带具体示例的文本,对于初学者,这些内容非常有价值。

第5、6章涵盖了使用简单神经网络(如反向传播)学习过程的所有基础知识,重点是讲如何在Pytorch 中的动手写代码。

第 2 部分讲的是面向现实问题的模型,包括从 3D 图像数据中检测癌症和肺结节等。这部分内容会引导读者完成整个设计和思考过程。作为机器学习建模人员,读者可以掌握需要遵循的所有必要步骤。

虽然我在这里有点偏见,但我喜欢这本书的这一部分,老实说,我认为这里介绍的方法可以转移到解决新问题上。

第 3 部分介绍了从 Pytorch 导出的模型,包括执行推理或移动设备所需的步骤。对于想要学习如何优化训练后模型,并在硬件资源有限的嵌入式设备中使用的工程师来说,这部分内容会很有帮助。

PDF :

https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf

François Chollet:Deep Learning with Python(2nd Edition)

这本书基于 Keras 框架讲述深度学习。本书的第 2 版包含大量新增内容,强烈建议阅读第二版。

前 4 章为新手基础知识,如张量运算、反向传播、基本的 Keras 模块,以及聚类和回归问题。

第 5 章分析了优化和泛化之间的权衡以及它与训练数据的关系。这一章节解释了为什么训练后的模型会通过逼近其数据的潜在流形实现泛化,并可以通过插值对新的输入做出高质量的预测。

第 6 章教你如何处理一个新的机器学习项目,包括设定切合实际的目标、收集数据、打破良好的基线和部署。第 7 章说明了如何更好地理解 Keras API 和回调。

第 8 章和第 9 章通过利用卷积神经网络进行图像分类和图像分割,全面概述了计算机视觉中的深度学习。第 10 章侧重于使用循环神经网络处理时间序列,第 11 章介绍了用于处理文本数据的Transformer架构。

第12章提出了各种生成模型来生成新的文本、图像。作者对生成对抗网络 (GAN) 、变分自动编码器 (VAE) 以及对潜在空间的解释和观点很有意思。

最后,本书涵盖了现实世界的高级概念,例如超参数调整、模型集成、混合精度训练、多 GPU 或多 TPU 训练等。

PDF:

https://drive.google.com/uc?export=download&id=1czfFQr2qWRBVGmrYyg_jzv0Q_-eJl5ip

Laurence Moroney:AI and Machine Learning for Coders: A Programmer's Guide to Artificial Intelligence

如果你正在找有关 Tensorflow 的完整教程,这本书可能是最佳选择。Laurence Moroney 是 Google 的首席 AI 倡导者,在 Tensorflow 及其相关库方面拥有丰富的经验。

本书分为两部分。第一部分关于研究机器学习应用、如何利用 Tensorflow 来开发这些应用。包括计算机视觉、自然语言处理、时间序列分析和序列模型。在这部分可以学习如下内容:

如何使用 Tensorflow 构建 CNN 和 RNN;如何处理文本、图像和时间序列数据;如何利用 Tensorflow 数据集进行数据处理和探索。

第二部分是在实际应用中使用这些模型。读者将熟悉移动或 Web 应用程序上的模型部署。主要内容包括:

如何使用 Tensorflow Lite 在 AndroidiOS 中嵌入模型;如何利用 Tensoflow.js;什么是 Tensorflow 服务、如何部署模型等。

这本书非常实用,有很多代码段和漂亮的可视化效果。

PDF :

https://drive.google.com/file/d/1-WViisjDgKzvdw-AZ0CLXctiGspP84SJ/view?usp=sharing

MLOP:云、生产和深度学习工程

Sergios Karagianakos:Deep learning in production

本书采用动手实践的方法来学习 MLOps。这本书的前提是,读者从一个深度学习模型开始,努力构建一个可扩展的 Web 应用程序。书中包含大量代码段和可视化效果,对于软件背景有限的机器学习研究人员和数据科学家来说,本书是个不错的资源。

书中各章节涉及机器学习生命周期的不同阶段。在讨论了设计阶段之后,读者将熟悉如何编写可维护的深度学习代码(如 OOP、单元测试和调试)的最佳实践。第 5 章是关于构建高效的数据管道,第 6 章涉及云中的模型训练以及各种分布式训练技术。

接着,本书讨论服务和部署技术,同时强调 Flask、uWSGI、Nginx 和 Docker 等工具。最后两章探讨了 MLOP。

更具体地说,是讨论如何使用 Kubernetes 扩展深度学习应用程序,如何使用 Tensorflow Extended 构建端到端pipeline,以及如何利用谷歌云和 Vertex AI。

相关资源:

https://github.com/The-AI-Summer/Deep-Learning-In-Production

Andriy Burkov:Machine learning engineering

这是本文推荐的 Burkov 的第二本书。作者在书中如何构建机器学习应用程序的设计模式和最佳实践方面建立了联系。

与前一本书类似,每一章都侧重于 ML 生命周期的一个单独阶段。从设计阶段开始描述了 ML 项目的挑战和优先级,然后讲到数据处理和特征工程,书中包括了常用行业术语的清晰解释,以及相应解决方案的常见陷阱。

训练和评估阶段分为三章,分析了如何使用正则化、超参数调节等技术提高模型的精度。还讲了关于处理分布偏移、模型校准、a/b 测试等问题。最后两章则讨论了部署策略、模型服务和维护。

PDF:

https://drive.google.com/uc?export=download&id=1P0h-3e5Po-gIO-eb8dtYdyHkmzlDGLCS

深度学习理论

Ian Goodfellow, Yoshua Bengio, Aaron Courville:Deep Learning

最后,深度学习理论部分只有这一本书(花书)。

为什么?因为如果你开始一页一页地阅读这本书,你不太可能读完。

这本书更像是一本手册,可以对深度学习从数学的角度进行更深入的理解,获得更可靠的信息。

本书介绍了深度学习理论的广泛主题,建立了坚实的数学背景。书中涵盖的数学领域包括线性代数、概率论、信息论和数值计算。

此外本书还展示了多样化的深度学习技术,如正则化、优化算法、卷积网络、序列建模。涉及到的应用方向包括在线推荐系统、生物信息学和视频游戏等。

最后,本书中还讲了不少有见地的理论观点,如线性因子模型、自动编码器、表示学习、结构化概率模型、蒙特卡罗方法、分区函数、近似推理和深度生成模型等。

PDF:

https://polarai.cn/265.html

参考资料:

https://theaisummer.com/deep-learning-books-2022/

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-01-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
100页的机器学习入门书:只要有基础数学知识就能看懂!(免费下载)
书名The Hundred-Page Machine Learning Book,作者Andriy Burkov是Gartner的机器学习团队leader,人工智能专业PhD,有近20年各种计算项目的工作经验。
新智元
2018/12/18
1.4K0
100页的机器学习入门书:只要有基础数学知识就能看懂!(免费下载)
三本关于机器学习和深度学习的书
这几本在Amazon上的排名都非常高,最近特别火的书。 第一本:《用Scikit-Learn和TensorFlow实践机器学习》(Hands-On Machine Learning with Scik
SeanCheney
2018/04/24
9480
三本关于机器学习和深度学习的书
7本必看入门深度学习书籍
对于入门深度学习的书籍,计算机视觉专家 Adrian Rosebrock 最近写了篇非常实用的书单,给深度学习新手推荐了7本书籍,最最重要的是,告诉了你最适合看哪些书。
机器人网
2018/07/23
6K0
7本必看入门深度学习书籍
五本必读的深度学习圣经书籍,入门 AI 从「深度学习」开始
(以下以 Daniel Jeffries 第一人称撰写) 多年来,由于实验室研究和现实应用效果之间的鸿沟,少有人持续研究人工智能,AI 在很多领域停滞不前。然而近两年,AI 在一些领域陆续有了重大突破,像是图像识别、自动驾驶、Alpha Go 等等。许多八九十年代的算法,因为硬体速度慢和缺乏数据等原因而不再被使用。而现在,受众多大数据和大规模并行芯片的支持,这些算法终于初见成效。 在过去的一年多时间里,研究人员竞相出版专着,以满足读者对深度学习知识的渴求。第一本关于深度学习的书已经上架,更多的将会在夏
机器人网
2018/04/24
2K0
五本必读的深度学习圣经书籍,入门 AI 从「深度学习」开始
【免费】5本机器学习电子书推荐(附简介与下载)
【新智元导读】 这五本精心挑选的电子书,可以帮助你更全面地了解机器学习,掌握进入这个行业必备的技能。 需要注意的是,虽然有关机器学习的免费电子书成千上万,而且其中有许多非常有名,但这份书单中避开了这些
新智元
2018/03/26
2.1K0
【免费】5本机器学习电子书推荐(附简介与下载)
PyTorch 官方教程发布,惊人的通俗易懂!
PyTorch 如今已经称为最受欢迎的深度学习框架之一了!2019年1月到6月底,在arXiv.org上发表的论文中,提及TensorFlow和PyTorch的数量相差无几。与2018年1月到6月相比,PyTorch增长了194%。相比之下,TensorFlow的增长幅度仅为23%。
AI算法与图像处理
2019/11/27
9450
《概率机器学习导论》最新版,谷歌大牛KevinMurphy最新863页pdf巨作
2012年,我出版了一本1200页的书《机器学习:概率视角》(Machine learning: a probability perspective),在概率建模的统一视角下,对当时的机器学习(ML)领域进行了较为全面的覆盖。这本书很受欢迎,并在2013年获得了 De Groot奖。
数据派THU
2021/05/11
1.3K0
《概率机器学习导论》最新版,谷歌大牛KevinMurphy最新863页pdf巨作
纯新手入门机器/深度学习自学指南(附一个月速成方案)
准备用三个月入门,和想要一个月速成,肯定是截然不同的路径。当然我建议大家稳扎稳打,至少可以拿出五个月的时间来学好机器学习的基础知识。
量子位
2018/07/24
8430
纯新手入门机器/深度学习自学指南(附一个月速成方案)
不用啃大部头,这本《100页的机器学习书》已收获7000读者
所以,这位名叫Andriy Burkov的小哥干脆说:我来给大家搞一本简短的机器学习书吧。
量子位
2019/04/24
6140
不用啃大部头,这本《100页的机器学习书》已收获7000读者
【春节荐书】必读机器学习书籍一览表,PDF下载
新智元推荐 来源:专知 编辑:克雷格 【新智元导读】转眼之间春节假期已所剩无几,大家是否也开始制定新一年的学习计划?本文就为大家推荐一个机器学习书单,其中大多数可以免费观看,并附上pdf链接。书单内容包括但不局限于:机器学习、深度学习、数据挖掘、贝叶斯理论、统计学习等。都是领域内最好的学习资料,绝对值得阅读,大家可以根据自己的研究方向自行选读。 机器学习是人工智能的应用,它使系统能够自动地从经验中学习和改进。在这篇文章中,我们列出了一些最好的免费机器学习书籍,绝对值得阅读。 1、Mining of
新智元
2018/03/20
1.4K0
【春节荐书】必读机器学习书籍一览表,PDF下载
强烈推荐!最好用的《机器学习实用指南》第二版终于来了,代码已开源!
早在去年的这个时候,红色石头就发文给大家推荐过一本非常棒的机器学习实用指南书籍《Hands-On Machine Learning with Scikit-Learn & TensorFlow》,中文译为《Scikit-Learn 与 TensorFlow 机器学习实用指南》。
红色石头
2022/01/14
9050
强烈推荐!最好用的《机器学习实用指南》第二版终于来了,代码已开源!
你现在应该阅读的7本最好的深度学习书籍
原标题: The 7 best deep learning books you should be reading right now 原作者: Adrian Rosebrock 翻译者: Amusi
Amusi
2018/04/12
4K0
你现在应该阅读的7本最好的深度学习书籍
荐读|五本最受欢迎的机器学习免费电子书及下载
如果对机器学习有所了解,想必对 KDnuggets 这个网站并不陌生。它们上个月举行了一个机器学习电子书评选,经过网友们的热心票选,得到了一份五大免费书的榜单,而且是免费的,编译如下。 No.1 机器
灯塔大数据
2018/04/08
9350
荐读|五本最受欢迎的机器学习免费电子书及下载
LeCun力荐,PyTorch官方权威教程书来了,意外的通俗易懂
PyTorch 无疑是当今最火热的深度学习框架之一。自 2016 年诞生以来,PyTorch 已发展成一个非常繁荣的开发社区。据统计,在 2017 年,深度学习顶会中使用 PyTorch 的论文比例还不到 10%;如今,PyTorch 已经称霸学界,在 CVPR 接收论文中占比 69%,NAACL 和 ACL 都超过了 75%,ICLR 和 ICML 也都超过了 50%。
机器之心
2019/12/05
7650
开发 | 入门深度学习,读对书很重要
AI科技评论按:本文作者为 Jeffries Consulting 创始人 Daniel Jeffries,他以自己的阅读体验,对当前含金量极高的几本深度学习书籍进行点评;对每本书的内容重点、所适合的读者群进行了总结。非常适合学习者在购书前进行参考,以免白费时间。AI科技评论编译。 Daniel Jeffries:多年来,由于实验室研究和现实应用效果之间的鸿沟,少有人持续研究人工智能,AI在很多领域停滞不前。 但近两年,AI 在一些领域陆续有了重大突破,比如:图像识别;自动驾驶;Alpha Go等。许多
AI科技评论
2018/03/12
9390
开发 | 入门深度学习,读对书很重要
开源!100 页机器学习教程全面开放,附完整代码
这本《百页机器学习》的作者是 Gartner 公司机器学习团队负责人、人工智能博士 Andriy Burkov。作者表示,这本书麻雀虽小五脏俱全,内容十分丰富。
红色石头
2022/01/12
4040
开源!100 页机器学习教程全面开放,附完整代码
[置顶] 《Python机器学习算法》的写作历程
前言 首先,感谢各位支持我博客的同学,你们的支持是我一直努力的动力,正是因为你们的支持,才有了《Python机器学习算法》一书的面世: 目前,该书已经可以在各大商城预定,以下罗列各大商城的购买链接:
felixzhao
2018/03/19
1.1K0
[置顶]
                        
                                                《Python机器学习算法》的写作历程
【NLP】NLP爱好者学习资源推荐汇总
导读:本文旨在整理汇总一些NLPer的学习资源,包括书籍、在线课程、博客等。本文中涉及的原始失效链接均已剔除或替换,博客部分均整理为近期仍在更新的博客,欢迎文末留言区交流补充。
黄博的机器学习圈子
2021/04/16
2.4K0
【NLP】NLP爱好者学习资源推荐汇总
【资源】机器学习和神经网络实践:书籍及博客推介
【新智元导读】前几天我们向大家推荐了自学成为 Data Scientist 在线课程系列,很多人纷纷收藏和分享。今天新智元再针对数学,为大家介绍几本书和相关资料。你或许没有强大的数学基础,你或许都还没
新智元
2018/03/26
1.2K0
【资源】机器学习和神经网络实践:书籍及博客推介
分享图灵深度学习的书单
昨日,ACM宣布AI界有“深度学习三巨头”之称的Yoshua Bengio、Yann LeCun、Geoffrey Hinton共同获得了2018年的图灵奖,这是图灵奖1966年建立以来少有的一年颁奖给三位获奖者。
商业新知
2019/04/26
1.2K0
分享图灵深度学习的书单
推荐阅读
相关推荐
100页的机器学习入门书:只要有基础数学知识就能看懂!(免费下载)
更多 >
领券
💥开发者 MCP广场重磅上线!
精选全网热门MCP server,让你的AI更好用 🚀
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档